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This paper is devoted to the rigorous proof of the universality conjecture of ran- 
dom matrix theory, according to which the limiting eigenvalue statistics of n x n 
random matrices within spectral intervals of O(n - j )  is determined by the type 
of matrix (real symmetric, Hermitian, or quaternion real) and by the deqsity of 
states. We prove this conjecture for a certain class of the Hermitian matrix 
ensembles that arise in the quantum field theory and have the unitary inw~riant 
distribution defined by a certain function (the potential in the quantum field 
theory) satisfying some regularity conditions. 

KEY WORDS:  Random matrices: local asymptotic regime: universality 
conjecture; orthogonal polynomial technique. 

1. I N T R O D U C T I O N .  PROBLEM AND RESULTS 

The random matrix theory (RMT) has been extensively developed and 
used in a number of areas of theoretical and mathematical physics. In par- 
ticular the theory provides a quite satisfactory description of fluctuations in 
the spectra of complex quantum systems such as heavy nuclei, small 
metallic particles, and classically chaotic quantum models. One of the 
important ingredients of this description is the universality conjecture of 
the RMT, according to which the local eigenvalue statistics on n x n 
random matrices (probabilistic properties of their spectra within intervals 
of the order of l/n) does not depend on a particular ensemble in the limit 
n =  ~ and is completely determined by the invariance group of the 
ensemble probability distribution. There are three invariance groups 
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(orthogonal, unitary, and simplectic) and three respective classes of the 
random matrix ensembles that model quantum systems possessing, respec- 
tively, invariance under time reflection and space rotations. The explicit 
form of the local eigenvalue statistics in the limit n = o~ for each of these 
classes was found the 1960s by Wigner, Mehta, Dyson, and others, who 
introduced and studied the explicitly solvable Gaussian and circular ensem- 
bles (see ref. 1 and references therein). 

In this paper we consider the technically simplest case of the unitary 
invariant ensembles. Moreover, we will study the class defined by the 
density 

p,,(M) dM = Z,]-' exp{ - n  Tr V(M)} dM (1.1) 

where M is an n x n Hermitian matrix, 

dM= f l  dMii I-'[ d3 Mik d~ Mjk 
j =  I .]<k 

is the "Lebesgue" measure for Hermitian matrices, Z ,  is the normalization 
factor, and V(2) is a real-valued function (see the Theorem below for 
explicit conditions). 

The case V(2)=22/2 corresponds to the Gaussian unitary ensemble 
(GUE), which was introduced by Wigner in the 1950s. Ensembles with an 
arbitrary V(2) were introduced in the 1960s, ~2-4~ and some particular cases 
were studied. The new wave of interest in this class of unitary invariant 
ensembles was caused by quantum field theory, where they arise in the 
large-n limit of quantum chromodynamics, two-dimensional quantum 
gravity, and bosonic string theory (see the reviews in refs. 5 and 6). 
Analogous ensembles are used in condensed matter theory and statistical 
mechanics of random surfaces.C 7.8 

Denote by p,,(2~ ..... 2,) the joint probability density of all eigenvalues, 
which we assume to be symmetric without loss of generality. Let 

p~")(2 t ..... 2t) = I p,,(2t ..... 2/, )./+ i ..... 2,,}d21+1 ...d2,, (1.2) 

be its /th marginal distribution density. The simplest case of p~t"~(2~) is of 
particular interest. Indeed, denote by 24/" ..... 2~,; '1 the eigenvalues of a 
random Hermitian matrix M and set 

N,,(A)= 1 ~ l, A=(a,b) (1.3) 
n 
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This is the normalized counting function (empirical eigenvalue distribu- 
tion) of the matrix. Then 

E{N,,(A)} =f, p(,")(2) d2 = ~A p,,(2> d2 (1.4) 

where E{-. .} denotes the expectation with respect to density (1.1). 
In a recent paper (9) it was proved that if V(2) is bounded below for all 

2 ~ R and satisfies the conditions 

V(2)>~(2+e)log 121, 121 ~>Lo (1.5a) 

for some Lo and 

I v ( , z , ) -  v(,L,)l ~< C(A)I,~,-,~,_1 ~', I,~,.21 ~<A (].5b) 

for any 0 < A < oo and some ), > 0, then p,,(2) converges to the limiting 
density p(2) (density of states) in the Hilbert space defined by the norm 

( - I  log l ) , - p l  p( ) , )p(p)d2  dp)  '/2 (1.6) 

and p(2) can be found from a variational procedure analogous to that 
known in the mean-field theory of statistical mechanics. Moreover, there 
exist positive numbers L, L] (L > L1 ), d and a such that (for t2[ > L) 

V ( 2 ) -  max V(p)>d 
lid ~< Li  

p,,(),) ~<exp{ --ha[ V(2)- max V(p)]}, 
lid ~< L i  

(1.7) 

f $(l.t) P,iP) dp- f $(p) p(p)dl.t[ <~ C [l~b'[1~ '2 11~b11~ '2 n -'/2 log '<-̀  n (1.8) 

where symbol 11""112 denotes the L2-norm on ( - L ,  L). 
Here and below the symbols C and Ci denote n-independent positive 

constants that may be different in different formulas. 
Now we formulate the universality conjecture following DysonJ 4) 

and for any function ~b(p) differentiable on ( - -L,  L) which grows not faster 
than e/'v(~'~, b > 0 ,  as i•l--" 
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Universal i ty  Conjecture.  
such that p(2 o) # 0, and arbitrary fixed (x~ ..... x/) e W 

For any n-independent integer l, 20 

( x~ 2o+ x ~ )  
lim [p,,(ko)]-Ip~"l 2O+np,,(2o ) ..... 

where 

= det [IS(x, - xk)[I !i.k = t (1.9) 

sin gx  
S(x)-  (1.10) 

7EX 

In other words, the limit in the r.h.s, of (1.9) is the same for all V(2)'s 
in (1.1) (modulo some weak conditions) and all 2o that belong to the 
"bulk" of the spectrum where p(2o) # 0. Thus the limit (1.9) for arbitrary 
V has to coincide with the same limit for the archetypal Gaussian case 
//(2) =~-/2, whose form is given by the r.h.s, of (1.9) and has been known 
since the early 1960s (see ref. 1 for results and discussions). 

In this paper we prove the following result. 

T h e o r e m .  Assume that the function V(2) satisfies the following 
conditions: 

(i) The condition 

V(2) >/(2 + e) log 121, 

holds for some Lo< Go [cf. (1.5)]. 

(ii) The condition 

sup I V"(~.)I ~< C ( L )  < ~ ,  

holds, where L is defined in (1.7). 

(iii) V'(2) exists for all 2 and 

[21 ~Lo  (1.11a) 

I2I~<L ( l . l lb )  

f (  V')-" (2) e -*l'c>'' d2  (1.11c) 

for some k > 0. 

Then the universality conjecture (1.9) is true uniformly in (xt ..... x~) 
varying on compact sets ofW. 

R e m a r k s .  1. In fact the Theorem is valid without any assumptions 
on the growth of V(2) provided that conditions (i) and (ii) are valid. 
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However, our proofs are simpler if V(2) satisfies (iii). To prove the theorem 
without this condition, we have to restrict from the very beginning all 
integrals to the finite interval ( - L ,  L) outside of which the estimate (1.7) 
is valid. The latter allows us to control the remainders and to prove that 
they vanish exponentially as n--* oo. This approach was used in ref. 9, 
where a kind of variational argument was applied to study the density of 
states p(2). In our case we can make the same restriction, but since, unlike 
ref. 9, here we use extensively the orthogonal polynomial technique, which 
relies strongly on integral relations, the respective estimates are more 
tedious and require more space. That is why we impose the technical 
conditions (iii). 

2. Denote by P~'n(2), / = 0 ,  1 ..... orthogonal polynomials on R 
associated with the weight 

and by 

w,,(2) = e -"~~) (1.12) 

f P~")(2) d 2 = 0 t  .... (1.13) p,,,I,n (2) e -,,n ;,~ 

~,~"'(2) = exp{-nV(2) /2}  PI"'(2), / = 0 ,  1 .... (1.14) 

the respective orthonormal system 

f •  ) = ( 1 . 1 5 )  ?%'+ ~',::'(2) d2 ~, .... 

Then the joint probability density of all the eigenvalues of ensemble (1.1) 
is  (I) 

I < ~ ] < k ~ / t  .]=1 

= (n t ) - '  (det II~']-,(2k)ll '; .k = ~)2 (1.17) 

and the marginal densities (1.4) are 

( n  - l ) !  
p~")(2t 2/) n! det I lk, , (2.2k)l l  ] . . . . .  - -  . . ] . k  = J ( 1 . 1 8 )  

where 

J l - -  I 

k,,(2,/~) = 2 4,~"'(2) O~'n(/t) (1.19) 
I = 0 
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is known as the reproducing kernel of the system (1.14). In particular, 

p,,(2) =- p(l"'(2) = K,,(2, 2) (1.20) 

where 

K,,(2, it) = n - ~k,,(2, #) ( 1.21 ) 

In view of (1.18) the proof of the universality conjecture (1.9) for the ran- 
dom matrix ensemble ( 1.1 ) reduces to the proof of the limiting relation 

( x np,~-2o)Y ) sinn(x-y)n(x_y) lim [p,,(2o)] - j  K,, 2O+np,,(2o), 2o-I = (1.22) 
i !  ~ 2 (  

which can be rewritten as 

( x ,2o+ Y ) sinn(x-Y) 
lim [k,(2 o, 2o)] -J k,, 2 o + k,,(2o, 20) k,,(2o, 20) = n(x --y) 

(1.23) 

and be regarded as a conjecture of purely analytic nature concerning the 
orthogonal polynomial (1.13). Since for a complete systems of orthonormal 
functions we have the relation 

~j  (2) ~b}" ' (# )=6(2-#)  (1.24) 
j = 0  

the result (1.23) can be viewed as saying that the fine ("magnified") struc- 
ture of the 0-function in (1.24) is universal and is given by the r.h.s, of 
(1.23). The result (1.23) can be readily proven if a precise enough 
asymptotic formula for the respective orthogonal polynomials is known. 
Let us consider the simplest ("toy") case of an n-independent weight sup- 
ported on a finite interval, say the interval [ -  1, 1 ]. By using classical 
asymptotic formulas ("~ we find that in this case p ( A ) = ( n ~ / 1 - ) 1 5 )  - j ,  
12[~<1, and relation (1.9) is valid for any 121<1. A less trivial case 
corresponds to the weight (1.12) in which V(2)= [2[~/c( with a positive e. 
In this case p~"�91 = n 1"2~nl(nl/~2), where (n/(x)} r are orthogonal poly- 
nomials associated with the n-independent weight w(x)=exp{-[x[~/c(} .  
The case c(=2 corresponds to the Gaussian unitary ensemble and the 
Hermite polynomials as n~(x). This case was studied in great detaiP ~ on 
the basis of the Plancherel-Rotah asymptotic formula tim describing the 
semiclassical regime of a quantum oscillator. For the general case ~ > 1 
asymptotic formulas were recently obtained in refs. 11 and 12. By using 
these formulas the limiting density p(2) can be found and the relation (1.9) 
can be checked for 2 =0.  (~3~ Unfortunately, the asymptotic formulas ~'~2) 
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are not precise enough to prove (1.9) for 2 ~ 0. This can be done only for 
0c = 4, 6, where more precise asymptotic formulas are known. 

3. We mention other works related to the subject of this paper. In 
ref. 14 a scheme of proof (1.22) for 2 =0  is proposed. It is based on a for- 
malism developed in studying the so-called double scaling limit of quantum 
field theory. In the ref. 15 a new asymptotic formula for the orthogonal 
polynomials P~")(2), l=  n + o(1), is proposed, in the case when the support 
of the density of states p(2) is an interval. By using this formula the authors 
derived (1.22) and, moreover, found a new asymptotic regime for the 
smoothed correlation function of eigenvalues for 1 >> 2 >> n - ' ("mesoscopic" 
scale). These results were improved and developed in a subsequent 
paper. 'a6) In ref. 17 the universality conjecture was considered by studying 
the generating functional of the densities (h18), which was computed by 
applying the Laplace method to its Grassman integral representation. 

4. We would like to stress that our approach is "local," i.e., it is not 
sensitive to the form of the support of p(2), provided that p(2) > 0. On the 
other hand, it is known that if V(2) is a polynomial of degree 2m, then the 
support of p(2) may consist of several (at most m) intervals. The work in 
refs. 15 and 16 is based on the asymptotic formulas for the orthogonal 
polynomials with the weight e -' 'v'') that are valid for such V(2), which 
produce the one-interval support of p(2). This is the case if, for instance, 
V(2) is a convex function (not necessary a polynomial), tg) These papers, 
while not rigorous, contain essential results and constitute important 
advances in the problem. 

We will prove the Theorem by using the orthogonal polynomial technique, 
which is rather powerful and widely used in the random matrix theory and 
its numerous applications. However, since the asymptotic formulas for the 
general case treated in the Theorem are not known, we combine the 
orthogonal polynomial technique with certain identities that were intro- 
duced in the random matrix theory in the seminal paper of Bessis et al. (5) 

This paper is organized as follows. In Section 2 we give the proof of 
the theorem following the main line of the arguments. The important 
ingredient of our arguments is the pointwise convergence of p,,(2) to p(2) 
on the set {.2: p(2) > 0}. 

Propos i t ion .  Under the conditions of the Theorem we have for all 
2 and n such that p(2)> n-,/9 

]p,,(2)-p(2)]<~C(l+ 1 ) - , / 4  (1.25) p- 5" 
for some positive n-independent constant C. 
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The Proposition is also proved in Section 2. Auxiliary facts which we 
need to establish the Theorem and the Proposition are proved in Section 3. 
We discuss some consequences of our results in Section 4. 

2. PROOFS OF THE P R O P O S I T I O N  A N D  THE T H E O R E M  

Proof  of the Proposit ion.  Consider the Stieltjes transform of the 
normalized counting measure (1.3) 

fN,,(d2) 1 L 1 (2.1) 
f , ( z } -  2 - z  n l = l ; t / - z  

and denote 

p,,(;L) d2 t "  

g,,(-) -- E{ Ji,(z)} = j (2.2) A.-z 

According to the spectral theorem 

f , (z)  = 1  Tr G(z) 
rl 

where G(z)= ( M - z )  ~ is the resolvent of a Hermitian matrix M. By using 
Lemma 1 (see Section3) for F(M)=Gik(z) (a matrix element of the 

( i k )  n ( i k )  - -  resolvent) and B=B"*'={Bj, , ,  }i ..... ,, Bi, . -C6r i, where 
CEC is a free parameter, it is easy to derive the identity (5~ 

E{ CG ,Gkk + C.-G~. + nGik(C(V'(M) )ki + ~( V'( M) ),,) -- 0 

Since ~ is arbitrary, we conclude that 

E{ GiiGkk + nGil,.(V'(M) )ki} = 0 

Now if we sum this inequality over L k = 1 ..... n and divide the result by n 2, 
we get 

E{f~,} + E { n  ' Tr  V'(M) G(z)} = 0  (2.3) 

By applying Lemma 3 to f ( p )  = (p - z) ~, z = 2 + h l, q > 0, we find that 

E{f~,} =E-~{J;,} + O(n 2q-a) (2.4) 

This bound, (2.1), and (2.2) yield the relation 

") t _ gT,(z)+ V(2)g , , (~)+ Q , ( z ) =  O(n 2q. 7) (2.5) 
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where 

Q,,(z) = I v ' ( ~ ! -  v'(2) 
/ z - z  p,,(/~) dt( 

is well defined due to (1.7) and our conditions on V(2) (see the Theorem 
and Remark 1). To proceed further we use the result (1.8), combining it 
with condition (I.1 lb). We obtain 

where 

Q,,(2 + iq) = Q(2) + o(r / -"4n -t,2 log t .z n) + O(~/) (2.6) 

Q(2) = i v'(/~ )/t -- 2v'(2) put" )" a/z" 

Combining (2.5) and (2.6), we find that 

(2.7) 

Thus on the basis of Lemma 4 we get 

n 13g,,(J.+in 1 '3 )=p(2 )+O(n  1"31ogl'2n) - 
1 

(2.9) p(2) 

On the other hand, it follows from Lemmas 5 and 6 that for 2 such that 
p ( 2 )  > n - , 9  

-~3g,,(2 + in - 13) _ p,,(2)l ~< C (1 

This bound and (2.9) imply (1.25). 

•(--•/ I 4 q- n 

P r o o f  of  the  T h e o r e m .  According to (1.18), the proof of the 
Theorem reduces to the proof of the limiting relation (1.22) to the 
reproducing kernel (1.21) of the orthonormal systems (1.14). We use 
the represeneation 

(1 1-I 
j=  2 2 <~j<k <~n 

I1 n n ) 
xexp - ~ V ( 2 ) - ~  V ( p ) -  ~, V(2j) (2.10) 

j = 2  

g,,(2 + in -2;3) = V'(2) -- Q(2) + O(n -i..3 logl..2 n) (2.8) - ~ + 
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which can be derived from the following identities well known in the 
RMT II ~: 

I n -  I I - 1 
l--[ ( 2 j - 2 k ) =  t~I ),~"' det [[P~'~,(2k)l[.'~'~.= , 

I < ~ j < k  ~ n  \ 

n - -  1 

Z . = n !  l - I  ( ) / ' ~  
I~0 

where ),~"~ is the coefficient in front of 2 ~ in the polynomial P"" If we a / �9 

substitute these identities into the r.h.s, of (2.10), set in the one of the 
determinant 2~ =2,  in other 2~ =p ,  and then integrate the result with 
respect to 2_ ..... ,2,,, using the orthogonality of polynomials _tP'"~, we obtain 
the 1.h.s. of (2.10). 

We will consider the function K,,(2o, 20 + s/n). The general case of the 
function K,,(2o +s/n, 2o+ t/n) can be reduced to K,,(2o, 20 + ( s - t ) / n )  by 
using Lemma 7. Let us choose 

6 = log n 
?/ 

and rewrite (2.10) in the form 

=exp Vl2oI- V 2o+  j_FI . 12.111 

Here and below the symbol ( . . . )  denotes the operation E{3 (2o -2 , ) . . . } ,  
XA2) is the indicator of the interval 121 ~< 6, and 

u(2) =(1  -X ,~ (2o-2 ) ) log  1 + 

Rewrite (2.11 ) as 

-T,,(2o) 1 +  E,=, C,~,_, \ n /  \j=,_ 2 o _ 2  j e u"~a'' Z,7'(20) (2.12) 
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where C~,=n!/[l! ( n - l ) ! ]  and 

T,,(2o) = exp - ~ V(2 o) + ~  V 2~ + Z,,(2o) (2.13) 

Z,,(2 o) = ( e  t''l;''~) (2.14) 

u,,(,~,,)= ~ u(,~i) (2.15) 
j= 2 

Introduce the probabili ty density [cf. (1.16)] 

p,,,(,L~ ..... L,)=z,: , ' ( ,~o) ( I  (,~,,-,~i) 2 I-I (,~J-,~k) -~ 
i=2 2<~j<k<~n 

x exp - n  ~ V(2.i) + t u(Jlj) (2.16) 
' -  j = 2 .1 = 2 

where Z,;,~(2o) is the normalization factor, and the respective marginal 
densities 

P<,'I'~('~2 ..... 21+ t) = f p,,,(22 ..... 2,,) dJ./+ z. ..d2,, (2.17) 

In particular, for t = 0 

It~ ~ 1"~(2o,2 ...... 21+ ) (2.18) P~'~)(22 ..... 2/+l)  = P , ,  ~"o, P/+ - I 

This allows us to rewrite (2.12) as follows: 

( s) [ ,  (s), 
K,, ;~,,, ,~,, + = T,,()~0) 1 + Y, CI,_,  

/ = 1  

xflhl~'() tO-- '~'J)pl , , (}~2 ..... ) . / +  I )  d 2  . . . .  d~./+ i] (2.19) 
i=2 , to-  ~,j 

Introduce 

where 

t l  - -  2 

R,,,(2,/t) = n -  1 ~ ~k'k(2) ~b'k(/x) (2.20) 
k = 0  

822 86 I-2-9 
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and {P,t.(2)}~(-= o are polynomials that are orthogonal with respect to the 
weight ( 2 -  20) 2 exp{ -nV(2)  + tu(2)}. 

P,/(2) P,,,(2)(2 - 2o) 2 exp{ - n  1I(2) + tu(2)} d2 = 61,,, 

Then [cf. 1.18)] 

,I t ,,..., 2/+ I ) = 
(n  - l )/ 

( n - 1 )  ... ( n - l - 1 )  
det IIR,,,(2i+ ,, 2k+ )ll.~k= i 

and after the change of variables x j=n(2 i  + t -) to) ,  we can write (2.19) in 
the form 

K,, 2o, 2o+ n =r, ,(2o) 1+  n ~  
/ = |  

-,,,~ i= I x /  + I - ] "  n / l l / . k  = a 

We will prove that 

K,, 2o ,2o+ =T,,(2o) 1+ ~ j  , I-I xi 
/ =  I " - - m "  j = 1 

xdet  Ro,, 2o+ 7 , 
17 / l l j .k  = 

+o(1)] 
To this end we use Lemma 9. Therefore we have to check conditions 
(3.41)-(3.45t of the lemma for A=Ro,, and B=R~,,. Inequality (3.41) 
follows from (2.18) and Lemma 8, inequality (3.43) follows from (2.18) and 
Lemma 7, and inequality (3.42) follows from the representation (2.20). To 
check (3.44) and (3.45), consider the derivative R',,,(2c,+x/n, 2o+y/n) of 
(2.20) with respect to t. By using arguments similar to those in the proof 
of Lemma 5, we obtain 

R',,, 20  - 2 o +  

= -  u 2o+ + u  2o+ y R,,, 2 o + - , 2 o +  
2 n / j  n 

- ( ,7 - -2 )  R,, 2O+n, p g,,, 2 o + - , P  u(p)d~ 
17 

(2.23) 
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If Ixl <nO and lyl <n6, then the first term in the r.h.s, of (2.23) is zero. The 
second term can be estimated by using the Schwarz inequality and the 
analogue of (3.8) for (2.20), 

.< r,. ~, ~.,. (~, +~ 4,,,,,,,, + ,2 
( : ) :  p'J: 

x (n-2)jR,.~ 2o+ ,~ lu(~)ld~ 

n n .R,,, 2o+ , 2 o +  (2.24) 

Hence 

R',,, 2o + - ,  20 + 

In addition, 

( *  ~) maxR. ,  2o+-,n 2o+ 

= R,.,, 2(. + - .  20 + 
1l 

( . ~.)~" ( .. ~) =Ro, ,  2cj+-.2o+ + dtR'., 2 o + -  2o+ 
11 ) l't 

(*  ~ ) 5 ( *  ~) ~< Ro,, 20 + - ,  20 + + R~.,, 20 + - ,  ,;to + 
I1 n 

Thus it follows from (2.26) that for all x and t [cf. (3.44)] 

R,,, 2o + - 20 + <~ CRo, 20 + - ,  ,;to + 
17 ' n 

(2.25) 

(2.26) 

(2.27) 
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Combining (2.25) and (2.27), we obtain [cf. (3.44)] 

( ~  :) ( x  :) Rt,, ; to+~,; to+ -- Ro,, 2t~ +-n 2o-I- 

~ ,,2( x ~ ) ,~ (+y ,~o+y)  ~<n-6 R~ 2 ~ 1 7 6  R~ 2o n (2.28) 

Inequality (2.28), identity 2.18), and Lemma 8 guarantee condition (3.44) 
of Lemma 9. Condition (3.45) can be proved by similar arguments. Thus 
we can apply Lemma 9 to the expression in the r.h.s, of (2.21) and obtain 
(2.22). 

By using the analogue of the representation (2.10) for Ro,(;t, p) we get 

K,,(2 o, 2) K,,(;to, p) 
Ro,,(2, I.t)= K,,(2, p) (2.29) 

K,,(2o, 20) 

We will use this representation to prove that we can replace the function 
Ro,,(;t,p) in the r.h.s, of (2.22) by 

R*(~'5' xk) = K" ( ;t~ ;t~ +x~ - 1s 20 - x jn )  K,(2o, ;to + x J n )  
K,,(;to, 20) 

(2.30) 

We use again Lemma 9 for A = Ro,,, B =  R*. As explained above, condi- 
tions (3.41)-(3.43) hold for this A and thus we have to check (3.44) and 
(3.45). Since, according to (2.29) and (2.30), 

IR*(x, y) - Ro,,(x, Y)I 

it suffices to check that uniformly in lYl ~<n6 and n ~ co 

~( x ~) ( x)12 ~x, 2O+n, 2O+ -K, ,  2~176 ~nt/4, Ixl~<l (2.31) 
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f'~ri,J K n ( i l ~ 1 7 6  2 d'X" ~ C(/'t5)3111/4 (2.32) 

Estimate (2.31) follows from Lemma7,  because Ix], lyl<..n6=logn. 
Estimate (2.32) can be obtained if we integrate (2.31) with respect to x. 
Thus we have proved that 

( [ "s _ K, 2o, 20 + = 7",,(20) 1 + ~ j_,,,~ FI dxj 
/ = t  - j = l  xj 

The next step is to prove that we can replace the integral over the interval 
(-n6, nd) in the r.h.s, of (2.33) by the integral over the whole axis R. To 
this end let us notice first that since R*(x, x)= R*(--x, --x) 

fn '~  " ~ ) i A" = I .... ~/I-Ii dxj det ][R*(x i, x / 
/ 

f"'~ ~ dxi det IIR*(x/,xk)(1--Sfl,.) I = - -  I I / , ,  = t (2.34) 
-- tu5 ,/= l "~J 

In addition, 

/ 

�9 - -  . /k ) II j ' .k  = ,  A,-- I./~, dXJdet.y/ [IR*(x/,xk)(1 6 ' 

--j'"~ ILI dXJdet [[R*(x/,xk)(1--6,a-)][5.a-=, 
- . ,5  j = | X i  

(1-X,,a(xj) ) dxj <. ~ C;'f 
,, = ,  ~ =  IX;I 

/ 

x 1-I Z'"~(xj) dXJldetllR*(x/,xk)(l. --5/k)lli.k=,l' 
.;=,,+, Ix j l  
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, ,-,,  j- ~ ,  (I -X,,.,(xA) dx j 
~< Z c; Z c7'_. l.'<jl 

p = I m = 0 j = . 

p + m  
x 1-[ ( 1 - Z , ( x i I )  dx ,  

I H Z,(Xk) dxk 
k = p + m + l  [Xk[ 

Idet [IR*(xj, x,)(1 - 6;,)1l' �9 .i,1<= I1 

c; Z c7'_1, 
.= ,  .... o ~=, IX;I 5'~ 

p + . ,  ( l _ x l ( x i ) ) d x  i t } 1 2  

H ix;lS,,~ H dx, Z,(xk) 
i = p + l  . k = p + m + l  

x { I ~ - x l ( l - - z , . & 9 " d x i ~ ' ~ i "  ( l - x d x A )  dx, 
;= Ixjl v~ ,=~+, IXA 3'~ 

/ 
H z,(x,.) dXk 

k=p+,,,+, Ix*[ 2 

"}1 /2  
- '~  ' =, l - ' )  Idet JJR*(x/, xk)( 1 ./*))]/.k 

The first factor in the r.h.s, of the last inequality can be estimated by 
(n&)-~"4C r-1'. To estimate the second one we repeat almost literally the 
arguments of Lemma 9. We obtain 

A I <~ l .  + 2),,2Ct(n&) -1,4 

Therefore 

( s) [ 
K,, 2o.) .o+ n = T,,().o) I +  ~,  ~ , x--~- 

, +o ( ,  )i x det [IR*(xj, x,)l j., =) 

Now, by using the formula 

ajo aok I 
det I[ajk[[~.,=o =aoo det a.i , aoo .i.k = i 

(2.35) 
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we obtain from (2.35) 

K,, 1+ y, 1!p,,(Xo)f , ,  
/=1 j = l  

where xo - - 0  and S,,(x)=K,,(2o, 2o+x/n). The integral in the r.h.s, of 
(2.36) can be computed by using the Fourier integral technique. This is 
done in Lemma 11 of Section 3. According to that lemma, 

s 1 

L np,,(2o) s 

Comparing this expression with (1.22), we see that to finish the proof of the 
Theorem, we have to establish the relation 

lim T,,(2o) = p(2o)  
t l  ~ - s  

This relation follows from the Proposition and Lemma 10 of Section 3. The 
Theorem is proved. 

3. A U X I L I A R Y  R E S U L T S  

In this section we prove a number of facts that we used in the proofs 
of the Theorem and the Proposition in Section 2. 

L e m m a  1. Let F(t), t~R, be a continuously differentiable and poly- 
nomially bounded function, and let B be an arbitrary Hermitian matrix. 
Then 

E{F'8(M)} -nE{F(M) Tr V'(M)B} = 0 (3.1) 

where F'B(M) = lim . . . . .  e - ] [F (M + eB) - F(M)] .  

Proof. We obtain the lemma by differentiating with respect to t the 
identity 

f exp{ --n Tr  V(M+ tB)} F(M+ tB) dM = f exp{ - n  Tr  V(M)} F(M)aM 

which follows from the invariance of the measure dM with respect to shift 
M ~ M + B by an arbitrary Hermitian matrix B. 
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Remark. 

Lemma 2. 

Pastur and Shcherbina 

This lemma was in fact proved by Bessis et al. ~s~ 

Let K,,(it, p) be defined by (1.21). Then 

I (it -'u)2 K~,(it, u) dit dl~ < C  (3.2) 
I1- 

and for ~ = 1, 2 

tf , ,  - 

Proof. It follows from the orthogonality relations (1.15) that for 
j = O ,  1,2 .... 

where 

riPi+,(it)+ri_,Pj_l(it)=itpi(it)  (r_,  = 0 )  

/ ,  

r /=  J 2Pj(it) Pi+ ,(it) e dit 

and we omit the superscript n to simplify the notation. 
J =  {Ji~.})-% = ~ the Jacobi matrix defined by (3.4): 

Ja~ = 1~j%+ ,.k + ' : j- ,  %-,.a- 

Then for any nonnegative integer p 

(J , ' ) ; ,  = f i t , ' r  r  dit 

By using the identity 

(3.3) 

f , 1 K,,(2,2) K;,(2, #) d# n 

and (3.7) for p = 1, 2, we find that the 1.h.s. of (3.2) is 

, , -  I , , -  I \ 

#k) 
. i , k  = 0 , "  

(3.4) 

(3.5) 

Denote by 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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This relation and (3.6) yield 

n-" ~ (2 _p)2 K~(2, p) d2 dp = 2,'~, _, (3.10) 

Using (1.7) and (1.19)-(1.21), we obtain that for some n-independent a, Li ,  
L > 0  

[~b~(2)]'-<..np,,(2)<...nexp{-an[V(2)- max V(p)]}, I2I>/L (3.11) 
l id ~< LI 

and then (3.5) implies the bound 

IrA ~< C (3.12) 

for some C. This bound and (3.10) imply (3.2). Similar arguments and 
Eq. (3.4) yield 

I (2 -p )  Kff,(2, p) tilt = ~k,,_ t(2) ~b,,(2) r,,_ i 1l 2 

Now (3.3) follows from this identity and (3.12). The case ~ = 2  in the l.h.s. 
of (3.3) can be proved analogously. Lemma 2 is proved. 

Let f (p ) ,  p ff R, be a bounded and Holder continuous L e m m a  3. 
function, 

I f ( A ) - f ( # ) l  ~< C IA-/t l  ~ (3.13) 

for some C > 0 and 0 < ~ ~< 1, and 

f ,  =-1 i f(2~"') 
II i = I 

where {2'/"}y=, are eigenvalues of  a random matrix. Then 

D{f,,} - E { l f , , - E { f , } [  2} ~<Ctn ' ~ (3.14) 

Proof. By using (1.18) and (1.19), we can write (3.14) as 

D{ f,,} = �89 f If(A) -- f(,u)[ 2 K~,(2, p) d2 dp 
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This representation, (3.13), the Holder inequality, and the relation 

f K~,(2, p )d ) ,d~=n  ' (3.15) 

yield the bound 

D{J;,} ~ - ~  12-1tl2 g~,(2, p)d2dl.t [ n - t ]  ' -=  

which implies (3.14) in view of Lemma 2. Lemma 3 is proved. 

I - e m m a  4. Assume that 2 is a point of the spectral axis at which 
p(it ) > 0. Then 

p(),) =-1 {Q(a) - [V'(),)]'-/4} '/2 (3.16) 
/'C 

where Q(2) is defined by (2.7). 

Proof. According to (1.8), p,,(2) converges weakly to p(2). This 
result allows us to perform the limiting transition in (2.5) and to obtain for 
nonreal z's the relation 

g2(z) + V'(2) g(z) + Q(z) = 0 (3.17) 

where g(z) is the Stieltjes transform of the limiting density p(2). Definition 
(2.7) and condition (1.I lb) of the Theorem imply that Q(2 + i0) is a real- 
valued, bounded function with a bounded derivative. Then by general 
principles 

p(2) =-1 .3g(2 + i0) (3.18) 

is also bounded. Computing the real and the imaginary parts of (3.17) 
rewritten as 

Q 
g =  - - -  (3.19) 

V ' + g  

we find (3.16). Lemma 4 is proved. 

Lemma 5. Under the conditions of the Theorem 

sup p,,(2) <~ C (3.20) 
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and 

~ ~ c,(4,] ,(,U + 4,~(,t)) + Q, (3.21) 

P r o o f .  We start from a simple identity 

dp,(2)d2 - @,(2dt + t) ,=,, 

Performing in the integral (1.2) the change of variables 2 i - t = p ~ ,  

i = 2 ..... n, we rewrite p,,(2 + t) as follows: 

. i =  2 

it 

j = 2  i>j>~2 

Thus, after differentiating with respect to t, we get, for t = 0, 

dp,,()~) 
d2 

n V'(2) p,,(2) - n ( n -  1) J" V'(22) p,(2, 22 ..... 2,,) d,t2 ... d2,, 

= --nV'(2)K,,(2, 2) 

-n-" V (22)[K,,(2, 2) K,,(22.2_,) -K,~(2. ,2)] d2~ (3.22) 

The identity (3.1) for F ( M )  = 1 and B = 1 yields 

E{ Tr V'(M)} = n f V'(2) K,,(2, 2)d2 = 0 

Hence by (3.22) 

p',,(2) =n 2 f [ V'(p)- V'(2)] K,~(2, p) dp (3.23) 

Now we split this integral into two parts corresponding to the intervals 
[p[ > L  and [p[ ~ L ,  where L is defined by (1.7). The former integral is 
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bounded because of the inequality K~,(2,1t)<~Kj,(2,2)K,,(#,IO and the 
bound (1.7) for K,,(2, 2 )=p, (2) .  In the latter we write 

v ' ( / ~ ) -  v ' ( ; 0 - -  ( / ~ - 2 )  v"(2)-~ 
( #  - 2 )  2 
- -  v ' " (~)  

for some ~ depending on 2 and p and use Lemma 2 and condition (1.1 lb) of 
the Theorem. Combining the bounds for these two integrals, we obtain 
(3.21). To obtain (3.20), we have to use (3.23) and (1.13). Lemma 5 is proved. 

k e m m a  6. Take e=O(n-~4). Then for any 2 and n such that 
p(2) > n -1,9 we have 

I,,, _ ;., ~,: (qJ: ,(#) + ~:(/t)) rill ~ C, ( I  + p(~))  n - ' '4 (3.24) 

1 (~ ,_  , (~)+ qs~,(p))~< C_, (1 + p ( ~ ) n - '  ~ l / t - 2 ,  ~<~ (3.25) 
17 

Proof. Let us introduce the density 

P,;(),I ..... 2,,_1 Z,; exp - n  y. V(2~) 1-[ (2j-2k)= (3.26) 
j = l  I<~i<k<~n I 

The difference of this density from density (1.2) written for n - 1 variables 
2~ ..... 2,_ ~ is that in the former we have the factor n in the exponent, while 
in the latter we have n -  1. Set 

n - 2 n -  1 t" , , 1 p,~(2) E [ r ]-" (3.27) = j - - -  n p,7(2, z ...... 2, ))d22...d2,,_ I nJ=o 

Then 

~, _ ~(2) = n[p,,(2) - p,, (2)] (3.28) 

Furthermore, by using the analogue of identity (3.1) for the density p,, and 
arguments similar to those proving (2.5), we obtain the relation 

[ g,:(z)]-" + --~_--~_ dl~=O ~ (3.29) 

for the Stieltjes transform g,[(z) of / )2  (P) and - =  2 + iq, q > 0. Denote 

A,,(-) ~n( g,,(z)-g,7(z) ) -  I 0~,_ ,(1~_..____) cO L (3.30) 
l~ - z 
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subtract (3.29) from (2.5), and multiply the result by n. We obtain 

For z = 2 + in l/4 this relation takes the form 

f (v'(,~) - v'(p)) ~,_ ,(p) A,(z)(g,,(z) +g,7(z) V'(2)) i 

J 

Then relations (2.8), (3.16), and (3.18) imply that 

3A,,(2+in-t'4)<~C3 1 +  

Using definition (3.30), we obtain for z = 2 + ie with e = n-1/4 

~,,__~,_<~O;,_,(p)+~<2e 2 (p-~)~+-e2+<c4 I+  e 

Now we derive (3.25) from (3.31). Set 

~ u , , _ , = ~ , _ , ( p * ) =  max {4J~,_,(P)} 

p,  = sup{p: p E (2 - e, p*),  ~b~,_,(p) ~< g*,,_,/2} 

Since [P t -2E  ~e ,  we have from (3.31) 

g,, 2 ( P * - P l ) " <  07, ~(p)dp<..C4 1 +  1 n -u4  
tl  

On the other hand, 

( 7 ;" f ~'~ - (~ '~"- ' ) " "  ( p * -p , )~  (r I I t --=---  (~,,_,)-(p 
P* - - P l  ,i 

and since 

I (0;,-,)-" (p) dp= 7 ( V'(P))2 (0.-,)2 (p) dp ~ Csn'- 

ap+ o(1) 
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(3.31) 

(3.32) 

& 
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we obtain 

- -  ~ Csn 2 (3.33) 

Now if we multiply (3.32) by (3.33), we get (3.25) for ~,,_ i. 
To prove the analogous bounds for ~9,], we have to repeat the above 

arguments for the density [cf. (3.26)] 

p,+(21 ).,, + I ) =-~-7- exp ..... z,, . - "  ,_Z. v(;~j) 1-I 

and for 

( % - 2 , )  2 

2 n + l  f +'2 1 'L 
p, '(  ) = - - - ~ - J p , ,  ~ ,22 ..... 2,+,)d22...d2,,+,=nj.=,=, [q;j(2)] 2 

so that qJ , ] (2)=n(p,+(2)-p , (2))  [cf. (3.28)]. Lemma 6 is proved. 

L e m m a  7. If p(20) 4:0, then 

1 I x - y ]  2 ) 
<~ C lxl ~ - ~  - -  ...... '/~- (3.34) 

Proof. Repeating almost literally the derivation of (3.22), we get 

x[ v'(2)-~ n d2 

To estimate the r.h.s, of this relation, we split this integral into two parts 
corresponding to the intervals I)tl > L and 12[ ~< L, where L is defined by 
(1.7). The former integral is bounded by C e x p { - n a d / 2 }  because of the 
inequality K~(2,/,) ~K,,(2, 2) K,,(/~,/~) and the bound (1.7) for K,,(2, 2) = 
p,,(2). In the latter integral we write 
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v (  ) - ~  - ~  

= (2-2., .)  V"(2.,.) + 5  (2 -2 , . )  U"(2.,.) 

+ 0 ( (2  - 2,.) 2 + (2 - 2.,.) 2) 

,, 1 
= ~ ( 2 - 2 . , . )  V (2.,.) + ~  (2-2., ,)  V"(L. ) 

+ o ( ( 2 -  2. , .)(2- L.) + ~ / 

where 

x -  tx tx 
2.,. = 20 + , 2.,. = 2o + y - 

n 1 7  

According to (3.7), 

n f K,,(2,.,. 2) K,,(2,., 2)(2 - 2,. ,.) d2 = r,,_, T,,d/~"q~,--.,-,I qj,-'-t"'t2, ,.) 
�9 " ' "  1 l  " 

In addition, by the Schwartz inequality 

,7 f K,,(2.,., 2)K,,(2.,,, 2)(2--2.,.)(2--2.,.) d2 

~<n K~,(2.,., 2)(2 -- 2,.)2 d~ K~,(2,.,2)(2--2.,.)2d2 

Now the arguments similar to those used in the proof of Lemmas 2 and 5 
yield the estimate 

x . _ , ,  
d K  20+ ,2o+ y - t x  

n 17 / I  

c (. < - I x l  ' + " ~0;(2,,)+~&7, ,(2,,)~ Ix-yl2 ;,(2,.) ~7,_ ,(2.,.) + " 
/ I  " - " ? /  

- -  "}- e - ,,ad/2 ) 

Combining this estimate with (3.25), we obtain (3.34). 
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Lemma 8. 
uniformly in n 

Proof. Consider 

Pastur and Shcherbina 

Let p~'~(2j,2_,) be specified by (1.18) for /=2 .  Then 

f l p~'~( 2o + x/n, 20) clx <~ C (3.35) 
- - I  X -  

w_- 11 

where symbol ( . . . )  was defined in (2.11). By the Schwarz inequality W 2 
is bounded from above by the product of integrals 

z,:,f rI t2,-2;12 I-I /2,,+~-2,t-" 
2 < ~ , ] < k < ~ n  2<~j<~n 

{ " t xexp - n V ( 2 o ) - n  ~ V(2i) 
]=2 

for a= +l/n. In addition, n (V(2o) -V(2o+a) )  is bounded in n due to 
(1.I lb). This allows us to write the bound 

On the other hand, W can be written as 

W= ( f l  (~ ,(2i)+ q~2(2,))) 
\ i = 2  

where 

= ~_(2i + C ~ ,,- i t(23 _,(2; 
- - i = 2  - -  k = l  \ i ~ 2  i = k + 2  

(o i -n - ' (2 -  2ol-'1: r  n - - ~ x - ~ J  ' n I2-2o[ < 1 

otherwise 

(3.36) 
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and 

1 --n2(2--2o) 2, n 12--2o[ < 1 

ckd2) = n2(2 -  2o72- 1 
otherwise 

n2(2-2o)'-  ' 

Since 0 ~< ~b_,(2) ~< 1, ~b i (2) ~> 0, and ( 1 ) = p,,(2o), we get from this represen- 
tation 

/ }) W > ~ - p , ( 2 o ) + ( n - 1 ) I d 2 e k ~ ( 2 )  f i (22-2)  ex p log~bz(2 i) (3.37) 
i 3 

By using the Jensen inequality and (1.2) we have 

(6(22 -- 2) exp{ZT= 3 log ~b2(2;) } ) 
(6 (22 -~ . ) )  

{( ,, )} ~>exp 6(2_,-2) ~ l~ ~2(2,)[ """t~'2 ,.,o, 2 ) ] - '  
i = 3  

= exp {(n-- 2) I log ~,(2') ,, '""~ 2 ,2 ' )d2 ' [p~" (2o ,2 ) ] - ' }  _ v3 ,.~o, (3.38) 

According to (1.18), 

rt 2 { t2-  1 , 
PT"(G, 2, 2 ' )=  (n-- 1)(n --2) ~,----E p''(2 ) p~"(2o, 2) 

+ 2K,,(2o, 2)K.(2  o, 2') K,,(2, 2') 

' ' ' 2 ' )  -p,,(2o) K,7(2. 2 ) -p , , (2)  K,7(2 o, ) (3.39) 

Moreover, since log qb2(2') <~ 0 and 

2K.(2o, 2) K,,(2o. 2') K,,(2', 2) 

<2K,~,/2(2o, 20)K,~/2(2, 2)IK,,(2o, 2')1-IK,,(2', 2)1 

~< p,,(2o) K~(2', 2)+ p,,(2) K,~(2o, 2') 

we have 

f d2' ~) 2') K.(~', 2) log (b2( 2' )( 2K,( 2o, K,,(2o, 

- p , , ( 2 o )  K~,(2, 2') - -p, , (2)K~,(2o,  2')) >i 0 

82286,  I-2-10 
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Hence, taking into account that p,,(2) is bounded from above uniformly 
in n, we get 

-- p,,(2o) + (n + 1 ) f d1 (b~(2) e2"~"lt~w~o, 2) W~> 

>~ - p,,(2o) + , p~'~ 2o, 2o+ dx 
I X -  

xexp - C  [log(1 -y2)l dy+ log(1 -y -2 )dy  (3.40) 
) I 

From (3.40) and (3.36) it is easy to derive (3.35). 

L e m m a  9. Let the functions A(x,y), B(x,y) be defined for Ixl, 
lyl ~< n6, ~-- -n-~log n, and satisfy the conditions 

y ' a2(x) 
A(x, y)~a(x)<~ Co, x2 dx~ C i (3.41) 

I 

f [A(x, y)('- dx<~ C~ (3.42) 

IX(x, x ) - . 4 ( - x ,  -x) l  ~<~, Ixl (3.43) 

i t  C 2 [b(x)l ~< C4 (3.44) 
b 2 ( x )  & 

[A(x,y)-B(x,y)[<.e2b(x), _ x . ~  <~ 3, 
I 

f'"~ IA(x,y) B(x,y)]-dx..~C;e; (3.45) 

Then 

i m~ ,"C I ,,,* ._FI dxj det I]A(xi,. a-)l jl k = ~ ( / C ) r ' 2  (3.46) 
I 

. -  X /  " " 

and 

f''"i=,~I d'xs ( d e t . r i  []A(x,, xk)]['i k =, . . . .  - d e t  l iB(x, , . .  Xk)llj.k _,)(.- <~el(IC) '/2 
(3.47) 

where e=n6(e~ +e2)+e3  and C depend only on Ci, i =  1 ..... 5. 
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P r o o f .  It suffices to proves estimates (3.46) and (3.47) for 

Ao( x i, Xk) = A(x  i, Xk)( 1 -- &jk) 

and 
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and 

f ,,a B(x. x) dx <~ 2n&l + 2e,( C 3 + C4 log nO) 
- n,5 X 

and we can easily obtain (3.46) and (3.47) for general A and B from the 
respective bounds for A0 and B o. 

Consider 

, , a f t  F ( t ) = f  dXJdet IlA,(xz, xk) 5k=, 
- , , a j = l  X i  " " 

where A,(Xi, Xk) = Ao(xj, Xk) + t(Bo - Ao)(-~/, Xk). To obtain (3.46) we have 
to estimate IF(1) -- F(0)I. Therefore it suffices to estimate dF/dt. Differen- 
tiating F(t), making respective permutations of columns and rows, and the 
same renumbering of variables, we obtain 

where 

# m~ / 

, j n "x '  , et , , , , ( x , ,  - ' - - =  xkJll;.a-=, & _,,ai=~ xj �9 

D,(xl ,  Xk)= ( A o -  Bo)(xa, Xk), 

Thus 

D,(Xi, Xk) = A,(-x~i, xk), j>~ 2 

, . ,  
- ' J=J  i-~jl det IlD,(x~,. k) ik=l] 

+ f"i,a f i t _  . .= ~ ( 1 - 2 ' , ( x j ) )  ]det l,D,(.x), x~.) . 'k=' ,  

Bo(X. Xk) = B(X~, Xk)(1 --,~jk) 

Indeed, due to conditions (3.43) and (3.44), the following inequalities hold: 

f ,a A(x_X) dx <~2n&t 
I - n a  X 
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, [ F  ,,, 
+ Y, C? j__[-[ x,(-O 

m = I - -  n & .  = I . 

/ 

x FI  
.j = m + I 

(1 -Z,(xj)) ~ Idet IID,(-~j, x~.)llj.k = 11 

fn,~ d x  i + fi 
--nc$ j =  I 

x [ I  Xt(XA~ldetllD,(x/,xk)l~k=, I (3.48) 
. / =  m + I 

where Z~(x) is the indicator of the interval ( -  1, 1 ). Let us estimate the last 
term 

f n,~ ,. dx i 
(m) m~ H F,. = ~ ( l - z , ( . r ~ ) )  

- . / =  I . 

! 

x l l  
j = m + I 

d x  i 
ZI(Xi) ~ ]det [ D  (XJ, Xk)}l/i k = 1] 

Other terms in the r.h.s, of (3.48) can be estimated similarly, 

IFC,'"'l ~ ~ (1 -Xl(xj ) )  
-. , : i  j =  I ~" .i~ 

/ 

x l-I 
.i = m + I 

dATi I t i / 2 
�9 . L  k = XI(Xi)~ M e t  I I D t ( x i ,  X k ) l l  i1 -~ 

X ~ I - - ( l - - z t ( x i ) )  ~I Xl(Xi) dxi 
- ' ' =  IXi I~" i .... +, 

(I -Zl(x/)) 
k - nd .i = I ~ 

x I-I zl(xj)z---~,~II D~(xi, xk) .2 ' ' '+'2 (3.49) 
j . . . .  +1 I x d - / = 1  �9 . k = l  

Here we used the Schwartz inequality and then the Hadamard estimate for 
determinants. Now the r.h.s, of (3.49) can be rewritten as the sum of the 
integrals 
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1,, . j , -  -'"~./=, IX;I 

I d x j  , 
• 1--[ Z,(Xi) 7 -~ , ,DT(x l , x j , ) " 'DT(x l ,  xit) 

/ . . . .  + ,  " I x / I -  

f ,,,~ ,,, dx i I d x  j 
~< ,,,~ = I J , ~ ( 1 - Z , ( X i ) )  I-[ Xt(-x:/)lx/12 

- -  j =  . j = m +  I . 

x D~(x , ,  "v6 ' "  D~(x  .... Xi,,,) a~(x , , ,+ , ) . . ,  a~(xt) ( 3 . 5 0 )  

with a,(x) = a(x) + te3b(x ). 
To estimate the last integral, we start by integrating with respect to the 

"free" variables, i.e., the variables that do not enter the set (X6 ..... xs, .). We 
use bound (3.42) for the integral with respect to xt and bounds (3.44) and 
(3.45) for integrals with respect to x2..., x,,,. If there are no free variables, 
then we use the inequality D~(x .... xj,,,) ~.<(Co+ t82C4) 2, which makes the 
variable Xy,. free. Repeating this procedure, we end up either with the 
estimate 

IJl ..,.il ~< C / -  uA t. i (3.51 ) 

or with the estimate 

Ill . . . j i b e3  C I -  IZ~ �9 i.j 

where C = max{ 2( C I + e2 C3), Co + e2 C4, 2( C 2 + e3 C5) } and 

(3.52) 

f,,,~ ~ ax, dxj 
zl~i= _,,,~ DT(xi, X/)(1 -Xl(x~))(1 -X l (Xj ) )  ix~13,,4 IX/I3/4 

with some i, j ~< m. Regarding D~(x,, .x~i) as the kernel of an integral operator 
acting in L,(_ - n S ,  nS) and using the bound sup.,., af"~_,,,~ D~(xi, xj). dx s for the 
norm of this operator and bounds (3,42) and (3,45), we obtain that 

Iv, j, 4 e~ C 

Repeating a similar argument to estimate all the other terms in (3.48), we 
obtain (3.46) and (3.47). 

L e m m a  10. Let T,, be defined by (2.13). Then 

C 
[ T,,(2o) -- P,,(2o)l ~< - -  (3.53) 

log n 
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Proof. We will prove the following bounds: 

[E{ U,(2o)} - �89 ~< Csn-'/4 log n (3.54) 

(exp{ 2U,,(2o)} ) ~< C (3.55) 

( ] U,,(2o) - E{ U,,(2o)} [ 2) <<. C/n6 (3.56) 

where U,,(2o) is specified by (2.15). Assuming that these bounds hold, it is 
easy to prove (3.53) by using the Schwarz inequality and the elementary 
inequality le" - I I <~ Ixl (e" + 1 ). 

To prove (3.54) rewrite E{ U.(2o)} as 

E{ U,,(2o)} = (n - 1 ) f u(2) p,,(2) d2 

= f ((n - 1 ) u(2) - ~b(~))(p,(2) - p(2)) d2 

+ f ~ ( 2 ) ( p . ( 2 ) - p ( 2 ) ) d X + ( n - 1 ) f u ( 2 ) p ( 2 ) d X  (3.57) 

where ~(2) is a differentiable function of the form 

( n - l ) 2 ~  ( - ~ - T )  

~(2)=  + ( n - l ,  2 - -2~  12--2o[<d,  

( n -  1) u(2), otherwise 

where 6, = n-~:4. Using the Proposition and Lemma 4, one can estimate 
the first integral I t in the r.h.s, of (3.57) as follows: 

I~ <~ Cn-~"4 f ( ( n - 1  [u(2)[ + lq~(2)[) d2 <~ Csn-t/41ogn (3.58) 
12 - ) ,oI  ~< ,~i 

To estimate the second integral, we use inequality (1.8), according to which 

If ~(2)(p, ,()0- p().))d).] ~< Cn -'/2 logt/2 n [l~'[I ~/2 [Iq~ll ~ '2 

= C6 ? In -i/2 logl/2 n (3.59) 
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The last integral 13 in the r.h.s, of (3.57) can be calculated by using a result 
from ref. 9 according to which, for any 2, p ( 2 ) #0 ,  

f l o g l 2 - 2 ' l p (  ) = V( )+cons t  ( ) 2' d2' 2 3.60 

Thus we have 

13 = �89  - -  1 )( V(2 o + s/n) - V(20)) + O((n6, ) - i )  (3.61) 

Relations ( 3.57 )-(3.61 ) prove (3.54). 
To prove (3.55), consider f(t)=log(exp{tU,(2o)} ). Since f(t) is a 

convex function, 

f (2)  ~<f(0) + 2f'(2) = log p,,(2o) + 2f'(2) (3.62) 

In view of (2.16) 

f ' (2 )  = (n -- 1) i u(2) R2,,(2, 2) d2 

= ( n - l ,  f u(2)Ro,,(2,2)d2 +(n-1)  f-o dt f u(2) R',,,(2,2)d2 (3.63) 

where R,,, and R',,, are specified by (2.20) and (2.23). According to (2.3), the 
second integral 12 in (3.63) can be rewritten as 

"El I2 = ( n - 1 ) I ~  dt u2(2) R,,,(2, 2) d2 

+ ( n - 1  ) f  u(2)u(2')R~,,(2, 2 ' )d2 d2'] 

~<C log-" 1+  x dx 
Id 

9 

+(n-1)2Ii;dt;u(2)u(2')R~,,(2,2')d2d2' (3.64) 

where we have used (2.29) for ) l=p  and (1.20), according to which 
Ro,,(2, 2)~<K,,(2, 2)=p,,(2),  the boundedness of p,,(2), and (2.27). 
Regarding R~,,(2, 2') as a kernel of integral operator K in Lz(R), one can 
estimate its norm as 11/~[1 ~< max;.~ R7,,(2, 2') d2' = n -  . Thus 
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( n -  1) 2 f u(2) u(2') R~,,(2, 2') d2 d2' 

u2(2) d2 

~<C log2(1 +x-~ )  dx ~< (3.65) 
tr~ 

To estimate the first integral I, in the r.h.s, of(3.63) we use again (2.29). Then 

Ii -- (n - 1 ) I u(2) Ro.(2, 2) d2 

n - 1 
= ( , , -  1) u(2) K,,(2, 2) d2 L ;/f.121 2) d2 

( maxlu(2, ,~  , ) 
= s  V,(2o) + O(n -i,,4 log n) + O n K7,(2 o, 2) d2 

2 p,,(2o) 

s 
=~  V'(2o) + O((na)-') (3.66) 

Here we have used (3.54) to calculate (n - 1) I u(2) K,(2, 2) d2. Relations 
(3.62)-(3.66) prove (3.55). 

To prove (3.66), let us note that in view of (3.54) and (3.66), 

E{U,,(2o)}=~ ~ u(2j)) +O((n6)-') 
\ j =  2 0 

where ( . . . )o  denotes the expectation with respect to density (2.18). This 
expectation is related to the operation ( . . . )  = E{ 6(2o-2~)...} as ( . . . )  = 
p,,(2o)( ... )o. Thus, to estimate the r.h.s, of (3.56), it is enough to estimate 

Z u(2j ) -  u(2;) 
\ " j = 2  " \ j = 2  0 0 

~< (n - 1 ) f u2(2) Ro,,(2, 2) d2 

- ( n -  1 ) ( n -  2 ) f  u(2) u(2') Ro,,(2, 2') d2 d2' 

Combining this inequality with estimate (3.64), we get (3.56). Lemma 10 is 
proved. 
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L e m m a  11. Let X(x), x~R,  be a smooth enough and rapidly 
decaying function. Then 

f Z da)det  IIX(X/--Xk)IIr 
. / =  r I ~\[i " . 

(i7~)/X/+ I(0) 1 - ( - 1 ) / + 1  

l + 1  2 
(3.67) 

where Xo = 0. 

Proof By using the Fourier integral representation of X(x), we can 
write 

det II X(.x2j- Xk)IIl.k = o 
/ 

= f r-[ dp; .~( p j) det [[ exp {ix/( p, - Pk)[[.l., = o 
/~0 

where .('(p) is the Fourier transform of X(x). This representation and the 
identity 

f e~ 
- -  dx = ig sign p =- i~O(p ) 

X 

allow us to rewrite the integral in the 1.h.s. of (3.64) as follows: 

I 

(hz)t f H dp/.~(p./) 
. i  = o 

1 1 

O(pl -Po) 0 
O(p~_-po) O(P2--Pl 

O(pl-po) 

0 

O(pll--pl)] 

~ 
Let us compute the determinant in the domain p~ ..... P,,<Po, P,,,+~ ..... 
P~>~Po. Without loss of generality we can assume that p~ <P2--. <P, , ,< 
Po <P,,,+ ~ < . . .  <Pt. Then the determinant will have the form 

+1 +1 + I  +1 

- 1  0 - 1  - 1  

- 1  +1 0 - 1  

- 1  +1 + I  

+1 +1 +1 +1 

+1 +1 +1 

+1 +1 

--1 --1 

- I  

- 1  

- 1  

+1 +1 

- 1  

- 1  
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Subtracting the first row from the / th ,  ( l - 1  )th ..... ( / - m ) t h  ones and then 
the first column from the second ..... ruth ones, we find that the determinant 
is equal to ( - 1 )  ~ "'. Therefore the l.h.s, of  (3.67) is equal to 

)' .... 
(i~)' Z C;' f dpo2(p,,) dp f((p) )((p)dp 

t ~ t  = 11 )11 

(ire)IX/+ I(O) 1 - ( - 1 )  t+l 

1+1 2 

Lemma 11 is proved. 

4. D I S C U S S I O N  

~2 c''~'' of eigenvalues of random matrices as Let us regard the set t j Ji= 
a point process, i.e., as the random counting measure 

v,,(A)-nN,(A)= ~ 1 (4.1) 

Keeping in mind that we are studying the asymptotic behavior of the eigen- 
value statistics for large n, we can define this point process either by the 
system (1.4) of its marginal distributions or by its generating functional 

(4.2) 

defined on a suitable space of test functions ~(2), 2 ~ R. We use the simplest 
case of bounded piecewise continuous functions with a compact support. 
Then, by using (1.17), we find that 

@,,[q~] = det(l - k,,Eq~]) (4.3) 

where k,,[q~] is the integral operator defined on the support a, b of ~ by the 
kernel 

k,,(2,1l)(1 - e  ~'~''}) (4.4) 

According to the Theorem, the "scaling" limit (1.9) of all marginal densities 
(1.4) is given by (1.9) for all unitary invariant ensembles defined by (1.1), 
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(1.7), and (1.11). To find the same limit for the generating functional we 
have to replace the test function ~b(2) by ~b,,(x)=q3(x/np,,(2o)). Then 

~[~b] -- lim q~,,[q~,,] =de t (1  -Q4,) (4.5) 
n ~ zr  

where Q,/, is the integral opera tor  defined on a,i, by the formula 

f .  e '~ ") v ( Q j ) ( x ) =  S ( x - y ) ( 1 -  ) f ( .  )dy, 
4, 

xEa~, (4.6) 

and S(x) is defined in (1.I0). These formulas contain in fact the same 
information as (1.9), saying that in our  case the point  process 

("~t (),o,2o+ t ) (4.7/ v~.,, ~ ) = v,, np,,(2o) 

converges weakly as n--* o~ to the r andom process defined by (4.5) and 
(4.6) or  by (1.9). 

Consider  now the probabil i ty  

A / i �9 R,,({ ,}j= ) = P r { v , ( A j ) = O , j = l  ..... l} (4.8) 

that an ordered set of  disjoint intervals Ai = (ai, bi) does not  contain eigen- 
values. Then arguments  similar to those proving (4.3) imply that 

R,,({ dj}~=, ) = det(1 - K,,A) (4.9) 

where d = U.i= ~ d.i and K,,A is the integral opera tor  defined on A by the 
kernel 

/ 

Z~,j(2) k,,(2, p) ZA,(II) 
j =  I 

Setting 

a i 
oq fl i 

= 2(, + np,,(2o)' bi = 2,, + np,(2o---~ 
/ 

i =  I 

(4.10) 

and using the Theorem,  we obtain that  

lim R.(  { A i i}.i= i) = r(O) (4.11 ) 
I I ~  5C 
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where r(~5) is the Fredholm determinant of the kernel 

/ 

X,~,(x) S ( x  - y )  Z,~,(Y) (4.12) 
j =  I 

We can also introduce the more general kernel 

! 

~jz,~,(x) S ( x -  y) z,,,(y) 
j= I 

(4.13) 

for an arbitrary collection of real r i. Then if for an arbitrary collection 
k =  (k~ ..... kt) of positive integers we consider the probability 

R,,( { d,} ~j =,, { k,} I =, ) -- Pr{ v,(dj) --- k j} 

its limit r(6, k) is 

k,!.-.(--1)k u .Ok'+ ... u l+k' ] r(6, k)  = k l ! . ~ r k , . .  " azk, 1"(6, r) (4.14) 
r j = l  

where r(6, r) is the Fredholm determinant of the kernel (4.13). 
The case / =  1 of (4.8) and (4.11) determines ~1 the limiting probability 

distribution of distances between nearest neighbor eigenvalues (spacings) 
lying in the O(n -~) neighborhood of 20. Thus in the limit (4.10) the 
spacing probability distribution is the same for all ensembles satisfying the 
conditions of the Theorem. For the Gaussian case, formula (4.14) was 
obtained in ref. 18, where some other kernels were also considered and 
various connections of the determinant (4.13) to integrable systems and 
related topics are discussed. 

We can also consider another asymptotic regime, making "windows" 
in the O(n - ~) neighborhood of different spectral points, i.e., considering the 
joint probability distribution of the counting functions v~'i~(t t ,  ),..., v~.~,,~"~l"~,~.) 
for distinct n-independent 2~ ..... 2k. Take for simplicity k = 2 .  Then we 
have to consider generating functional (4.2) on functions 

~(lt) = ~b,(np,,()., )(/~ - 2t)) + ~b2(llp.(22)(]-/- J.2)) 

Inserting this ~b(/~ ) in (4.2) and using a result from ref. 9 according to which 
p~"~(2 2 , ) ~ p ( 2 , ) p ( 2 2 )  as n ~  ov for distinct n-independent 2, and 2, 
and the Theorem, we obtain 

lim qs,,[~b] =~b[~b,] qs[~b2] 
t t  ~ -/ 

where r is defined by (4.5) and (4.6). 
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We conclude that in the "scaling" limit the local statistics eigenvalues 
lying in O(n -t ) neighborhoods of distinct spectral points are independent. 
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