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Universality of the Local Eigenvalue
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This paper is devoted to the rigorous proof of the universality conjecture of ran-
dom matrix theory, according to which the limiting eigenvalue statistics of nx n
random matrices within spectral intervals of O(n~") is determined by the type
ol matrix (real symmetric, Hermitian, or quaternion real) and by the density of
states. We prove this conjecture for a certain class of the Hermitian matrix
ensembles that arise in the quantum field theory and have the unitary invariant
distribution defined by a certain function (the potential in the quantum field
theory) satisfying some regularity conditions.

KEY WORDS: Random matrices; local asymptotic regime; universality
conjecture; orthogonal polynomial technique.

1. INTRODUCTION. PROBLEM AND RESULTS

The random matrix theory (RMT) has been extensively developed and
used in a number of areas of theoretical and mathematical physics. In par-
ticular the theory provides a quite satisfactory description of fluctuations in
the spectra of complex quantum systems such as heavy nuclei, small
metallic particles, and classically chaotic quantum models. One of the
important ingredients of this description is the universality conjecture of
the RMT, according to which the local eigenvalue statistics on nxn
random matrices (probabilistic properties of their spectra within intervals
of the order of 1/n) does not depend on a particular ensemble in the limit
n=o0 and is completely determined by the invariance group of the
ensemble probability distribution. There are three invariance groups
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(orthogonal, unitary, and simplectic) and three respective classes of the
random matrix ensembles that model quantum systems possessing, respec-
tively, invariance under time reflection and space rotations. The explicit
form of the local eigenvalue statistics in the limit n= co for each of these
classes was found the 1960s by Wigner, Mehta, Dyson, and others, who
introduced and studied the explicitly solvable Gaussian and circular ensem-
bles (see ref. 1 and references therein).

In this paper we consider the technically simplest case of the unitary
invariant ensembles. Moreover, we will study the class defined by the
density

pAM)dAM =Z" exp{ —n Tr (M)} dM (L)

where M is an n x n Hermitian matrix,

dM =] aM;; [] d3 M, dR M,

Jj=1 i<k

is the “Lebesgue” measure for Hermitian matrices, Z, is the normalization
factor, and V(1) is a real-valued function (see the Theorem below for
explicit conditions).

The case V(1)=2%/2 corresponds to the Gaussian unitary ensemble
(GUE), which was introduced by Wigner in the 1950s. Ensembles with an
arbitrary V(1) were introduced in the 1960s,'**’ and some particular cases
were studied. The new wave of interest in this class of unitary invariant
ensembles was caused by quantum field theory, where they arise in the
large-n limit of quantum chromodynamics, two-dimensional quantum
gravity, and bosonic string theory (see the reviews in refs. 5 and 6).
Analogous ensembles are used in condensed matter theory and statistical
mechanics of random surfaces.'”-®

Denote by p,(4,,..., 4,) the joint probability density of all eigenvalues,
which we assume to be symmetric without loss of generality. Let

DU Ay oy Ay) = j Pl tsees gy Ay oo Do) Ay - A, (12)

be its /th marginal distribution density. The simplest case of p{"((1,) is of
particular interest. Indeed, denote by A!",.., %" the eigenvalues of a
random Hermitian matrix M and set
1
N(d)y== ¥ 1, 4=(a,b) (1.3)

A

. €A
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This is the normalized counting function (empirical eigenvalue distribu-
tion) of the matrix. Then

E(N()} =] priaydr=] p b di (14)

where E{---} denotes the expectation with respect to density (1.1).
In a recent paper'?’ it was proved that if V(1) is bounded below for all
AeR and satisfies the conditions

M2)z(2+e)log|d], Al =L, (1.5a)
for some L, and
[V(A) = V(A) < C(A) |4 = A7, Al <4 (1.5b)

for any 0 <4 < oo and some y>0, then p,(4) converges to the limiting
density p(A) {(density of states) in the Hilbert space defined by the norm

1/2
<—f10g Il—#lp(k)p(ﬂ)d/ld/z> (1.6)

and p(A) can be found from a variational procedure analogous to that
known in the mean-field theory of statistical mechanics. Moreover, there
exist positive numbers L, L, (L>L,), d and & such that (for {A| > L)

V(A)— max Wu)>d
leb < Ly (17)

P2 Sexp{—na[ V(1) — max V(u)1},

|l < Ly

and for any function ¢(u) differentiable on (—L, L) which grows not faster
than "' b >0, as |u| — oo

U #40) p,() d— [ $(w) pla2) dp( <CIIY 18137 n " 7 log!?n  (18)

where symbol ||---||, denotes the L,-norm on ( —L, L).

Here and below the symbols C and C; denote n-independent positive
constants that may be different in different formulas.

Now we formulate the universality conjecture following Dyson.'¥!
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Universality Conjecture. For any r-independent integer /, A,
such that p(4,) #0, and arbitrary fixed (x,,.., x;)eR’

X
lim [p,(4e)] " p\" (l e Ayt —— >
"= [p 0 ] 0 P,,(/l()) v npn ())

=det [S(x, — “ k=1 (1.9)
where

S(\‘) _ Sin X

(1.10)

X

In other words, the limit in the rh.s. of (1.9) is the same for all V(A)’s
n (1.1) (modulo some weak conditions) and all 4, that belong to the
“bulk” of the spectrum where p(4,) # 0. Thus the limit (1.9) for arbitrary
V has to coincide with the same limit for the archetypal Gaussian case

= A3/2, whose form is given by the r.h.s. of (1.9) and has been known
since the early 1960s (see ref. 1 for results and discussions).

In this paper we prove the following result.

Theorem. Assume that the function (A1) satisfies the following
conditions:

(1) The condition
Ay =(2+¢)log |Al, Al = L, (1.11a)
holds for some L, < oo [cf. (1.5)].
(11) The condition
sup [ V") < C(L) < w, Al <L (1.11b)

holds, where L is defined in (1.7).
(1i1)  V'(A) exists for all A and

[ryr@esoa (Lllc)

for some k > 0.

Then the universality conjecture (1.9) is true uniformly in {x,,.., x,)
varying on compact sets of R’.

Remarks. 1. In fact the Theorem is valid without any assumptions
on the growth of V(A4) provided that conditions (i) and (ii) are valid.
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However, our proofs are simpler if ¥{1) satisfies (ii1). To prove the theorem
without this condition, we have to restrict from the very beginning all
integrals to the finite interval (— L, L) outside of which the estimate (1.7)
is valid. The latter allows us to control the remainders and to prove that
they vanish exponentially as #— oco. This approach was used in ref 9,
where a kind of variational argument was applied to study the density of
states p(4). In our case we can make the same restriction, but since, unlike
ref. 9, here we use extensively the orthogonal polynomial technique, which
relies strongly on integral relations, the respective estimates are more
tedious and require more space. That is why we impose the technical
conditions (iii).

2. Denote by PYA), {=0,1,., orthogonal polynomials on R
associated with the weight

W"(l):e—"”“ (112)
J.P(l”)()u) Pf;'xl)(ll) e_””/\"dllzél.m (113)

and by
Ip(/n)(/l)zexp{ —I’IV(/l)/z} P‘,")(/”, [=0,1,.. (1.14)

the respective orthonormal system
IWI"“)Wff,')(l)d/1=5/.r,, (1.15)

Then the joint probability density of all the eigenvalues of ensemble (1.1)

is(l)

Pl 2)=2""" Tl  (Ai—=4)? exp{—n 2 V(/l,-)} (1.16)

i<j<k<sn

=(n!)~" (det l|l/’/—|(/1k)||_';.k=|)2 (1.17)
and the marginal densities (1.4} are

(n—=10)"

PV Ay s Ag) = det Ik, (4, 24 (1.18)

n!
where

n—1

kA )= 3, ¥ (A) i (w) (1.19)

1=0
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is known as the reproducing kernel of the system (1.14). In particular,
pA) = piA) =K (2 ) (1.20)
where
KA uy=n"k, (A, u) (1.21)

In view of (1.18) the proof of the universality conjecture (1.9) for the ran-
dom matrix ensemble (1.1) reduces to the proof of the limiting relation

lim[p,.</1(,)]"K,,<An+ S SO 4 )=s"’”(x"y) (1.22)

Laded npu()"()) npn(A'O) ﬂ(x—"y)

which can be rewritten as

. . 1 X 1 y >=sinn(x—y)
i Ut 201 (b s ot s ) =500

(1.23)

and be regarded as a conjecture of purely analytic nature concerning the
orthogonal polynomial (1.13). Since for a complete systems of orthonormal
functions we have the relation

Y W) () = 82— ) (1.24)

j=0
the result (1.23) can be viewed as saying that the fine (“magnified”) struc-
ture of the J-function in (1.24) is universal and is given by the r.hs. of
(1.23). The result (1.23) can be readily proven if a precise enough
asymptotic formula for the respective orthogonal polynomials is known.
Let us consider the simplest (“toy”) case of an n-independent weight sup-
ported on a finite interval, say the interval [ —1,1]. By using classical
asymptotic formulas''” we find that in this case p(A)=(m./1—22)"",
|A| <1, and relation (1.9) is valid for any |A|<1. A less trivial case
corresponds to the weight (1.12) in which V(1) = [A|*/a with a positive a.
In this case p{"(1) =n'?*r,(n'"*A), where {(z,(x)} -, are orthogonal poly-
nomials associated with the n-independent weight w(x)=exp{ — |x|*/a}.
The case a=2 corresponds to the Gaussian unitary ensemble and the
Hermite polynomials as 7,(x). This case was studied in great detail'"’ on
the basis of the Plancherel-Rotah asymptotic formula''® describing the
semiclassical regime of a quantum oscillator. For the general case a> 1
asymptotic formulas were recently obtained in refs. 11 and 12. By using
these formulas the limiting density p(A) can be found and the relation (1.9)
can be checked for A=0.""* Unfortunately, the asymptotic formulas'‘"'?
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are not precise enough to prove (1.9) for A #0. This can be done only for
o =4, 6, where more precise asymptotic formulas are known,

3. We mention other works related to the subject of this paper. In
ref. 14 a scheme of proof (1.22) for A=0 is proposed. It is based on a for-
malism developed in studying the so-called double scaling limit of quantum
field theory. In the ref 15 a new asymptotic formula for the orthogonal
polynomials P{"Y(1), I=n+o(1), is proposed, in the case when the support
of the density of states p(4) is an interval. By using this formula the authors
derived (1.22) and, moreover, found a new asymptotic regime for the
smoothed correlation function of eigenvalues for I » A» n~"' (“mesoscopic”
scale). These results were improved and developed in a subsequent
paper.'® In ref. 17 the universality conjecture was considered by studying
the generating functional of the densities (1.18), which was computed by
applying the Laplace method to its Grassman integral representation.

4. We would like to stress that our approach is “local,” i.e., it is not
sensitive to the form of the support of p(4), provided that p(1) > 0. On the
other hand, it is known that if F{1) is a polynomial of degree 2im, then the
support of p(1) may consist of several (at most »1) intervals. The work in
refs. 15 and 16 is based on the asymptotic formulas for the orthogonal
polynomials with the weight e~""*) that are valid for such V(1), which
produce the one-interval support of p(4). This is the case if, for instance,
V(1) is a convex function (not necessary a polynomial).'”’ These papers,
while not rigorous, contain essential results and constitute important
advances in the problem.

We will prove the Theorem by using the orthogonal polynomial technique,
which is rather powerful and widely used in the random matrix theory and
its numerous applications. However, since the asymptotic formulas for the
general case treated in the Theorem are not known, we combine the
orthogonal polynomial technique with certain identities that were intro-
duced in the random matrix theory in the seminal paper of Bessis et al.'®’

This paper is organized as follows. In Section 2 we give the proof of
the theorem following the main line of the arguments. The important
ingredient of our arguments is the pointwise convergence of p,(4) to p(4)
on the set {A: p(1)>0}.

Proposition. Under the conditions of the Theorem we have for all
2 and n such that p(1)>n~"° ‘

19u(2) — p(D)] <C(1 +$)n“”“ (125)

for some positive n-independent constant C.
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The Proposition is also proved in Section 2. Auxiliary facts which we
need to establish the Theorem and the Proposition are proved in Section 3.
We discuss some consequences of our results in Section 4.

2. PROOFS OF THE PROPOSITION AND THE THEOREM

Proof of the Proposition. Consider the Stieltjes transform of the
normalized counting measure (1.3)

o N,,(d}.)__l- " 1
Stz = A—z —nlgl A—= (2.1)
and denote
. AA)dA
s =El ) = [ 2222 (22)

According to the spectral theorem
1
f=) == Tr G(z)

where G(z) =(M —z) ' is the resolvent of a Hermitian matrix M. By using
Lemma | (see Section3) for F(M)=G,(z) (a matrix element of the
resolvent) and B= B ={B*" B =000, +{0,,0,;, where

g S jom=1> Jm

(e C is a free parameter, it is easy to derive the identity"”’
E{LG;Gr+ (G +nG LV (M) + L(V'(M)) ) =0
Since ( is arbitrary, we conclude that
E{G,G+nG (V' (M)),;} =0

Now if we sum this inequality over 7, k= 1,..., n and divide the result by n?,
we get

E{f2} +E{n 'Tr V(M) G(z)} =0 (2.3)
By applying Lemma 3 to f(u)=(u—z) "', z=A+1iy, >0, we find that
ELf} =B/} + 0% (24)
This bound, (2.1), and (2.2) yield the relation

)+ V(A g (2)+ Q. (z)=O0n 3 *) (2.5)
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where
Vi(p)—V'(4)
H—z

0.(2) =J p.u) du

is well defined due to (1.7) and our conditions on V() (see the Theorem
and Remark 1). To proceed further we use the result (1.8), combining it
with condition (1.11b). We obtain

Q.(A+in)=Q(A)+ O(n~"“n~"log'? n) + O(n) (2.6)
where
(V) =V'(A)
Ot = [ =5 == ol du (27)
Combining (2.5) and (2.6), we find that
) d 2 1,2
glh+in" )= —V%A)+ [ <%M> —Q(A)+ O(n"?*log'? n)] (2.8)

Thus on the basis of Lemma 4 we get

n'3g (A+in ") =p(A)+O(n " log' > n) l%i) (2.9)

On the other hand, it follows from Lemmas 5 and 6 that for A such that
p(A)y>n=""?

I
“N3g (A+in "y —p (A <C<l+—>n"’l
|z~ 3g.( )= Pl )
This bound and (2.9) imply (1.25).

Proof of the Theorem. According to (1.18), the proof of the
Theorem reduces to the proof of the limiting relation (1.22) to the
reproducing kernel (1.21) of the orthonormal systems (1.14). We use
the representation

K(hm=2," [Tl dna=2)w=2) T (=4

j=2 2gj<k<n

><exp{—E () =2 Viu)— V(A_,)} (2.10)
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which can be derived from the following identities well known in the
RMT!":

n—1

-1
M G=a=(TIo) detip o,
=1

I<j<ksn

n—1

Z,=n [ ("3

=0

where 74" is the coefficient in front of A’ in the polynomial P{". If we
substitute these identities into the r.h.s. of (2.10), set in the one of the
determinant A, =4, in other A, =y, and then integrate the result with
respect to 4,,..., 4,, using the orthogonality of polynomials P!"’, we obtain
the Lhss. of (2.10).

We will consider the function K, (A, 44+ s/n). The general case of the
function K,(A¢+s/n, Aq+t/n) can be reduced to K, (4,, 1, +(s—1)/n) by
using Lemma 7. Let us choose

5=logn
n

and rewrite (2.10) in the form

K, (xo, Ao +5>
n

n n SN/ e 15 2oho=2) | o
= —_ —_— V —_ —_ J (i) .
exp {2 () 5 (1(,+n>}<11—[ [n =i + e ]> (2.11)

-

Here and below the symbol (...} denotes the operation E{d(1,—1,)}...},
xs(4) is the indicator of the interval |A| <J, and

S
u(l) =(1—xs1o— 1)) log (1 +m>

Rewrite (2.11) as

Kn (’10' }'0 + £>
n

n—1 IVEE S
=T,(4o) [ 1+ Z Ch_, <£> <H M—le‘)eunw)> Z;Tl(lo)} (2.12)

1=1 h j=2 Ag— J
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where C! =n!/[I! (n—1)!] and

T () =exp {— Vi) +2 V(Awf)} Z,(A) (2.13)
2 2 n

Z,(Ay) = ety (2.14)

Ufldo) = Z u(/lj) (2.15)

Introduce the probability density [cf. (1.16)]

Pm(/Iwa ) ,,,l('1 H(lo_'lj)z l—[ (/I_i—'{k)z

2<j<k<n

xexp{—n Y V(A)+t Z u( A, )} (2.16)

i=2

where Z'(,) is the normalization factor, and the respective marginal
densities

1)(17)(17 """ Al+l)—‘[p//:(l” 7'{::) [M'I-f-’ dln (217)

In particular, for =0

Po(Azses dpyy) = Pu_l('lo)P(/'Ql('{m'12’---’ A1) (2.18)

This allows us to rewrite (2.12) as follows:

!
K,, <;l-(), i()+ > Tu()"()) [ 1 + Z C;r—l (E)

n

s ()(A()
J I—[ /{ A l/:(}‘?’ 7}'/-(-[) -dj~1+|:| (219)
i=2 0
Introduce
1 n—2
Rm(luu)':—_ Z lpll.('” l,[/,/\(,u) (220)
n—1,%,
where

V) = (A= Ao) €xp { T+ —u(z)} Pu()

82286 1-29
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and {P,(1)}7_, are polynomials that are orthogonal with respect to the
weight (A — 4,)% exp{ —n V() + tu(A)}.

[ P2) Pu(3)(A=20)% exp{ —nV(A) + tu(A)} dA=3,,

Then [cf. (1.18}]

(n—1)
(n—1)...(n—=1-1)

p:;‘)(’ll’“'s j'/+ 1 ) = det IIRIII(A_f‘F { ’]”k+ l)”_;,k: i

and after the change of variables x;=n(4;,,—~A,), we can write (2.19) in
the form

n—1 1 _ 1
K,,(Ao,m) T()o)[1+z s

; X,
Rln <2'(l T ;‘() + —A>
h k=

j " H Y et

*m), 1 ~j

!
:, {2.21)
k=1

We will prove that

s n—1 / neo / d\
Krz<l()»/1()+;) [1+ Z 7]

—nd j= 1 -\'_

x det

X; Xy
ROM </10 + —Ja /1() + —£>
n n

! 1
o t0ls)] e

To this end we use Lemma 9. Therefore we have to check conditions
(341)-(3.45) of the lemma for 4=R,, and B=R,,. Inequahty (341)
follows from (2.18) and Lemma 8, inequality (3.43) follows from (2.18} and
Lemma 7, and inequality (3.42) follows from the representation (2.20). To
check (3.44) and (3.45), consider the derivative R}, (A,+ x/n, 4, + y/n) of
(2.20) with respect to 7. By using arguments similar to those in the proof
of Lemma 5, we obtain

In <'1 + )'() + >
1 X , X
=_ [ u (l(, +l> +u <l(, +)—>} R, <A(, + l, Ao +X>
2 n n n n

- (n —2) J Rm <2'() +;l;”u> Rm (AO +-’)‘;* /,l> u(/“) d)u (223)
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If |x} <nd and |y| <nd, then the first term in the r.h.s. of (2.23) is zero. The
second term can be estimated by using the Schwarz inequality and the

analogue of (3.8) for (2.20),

X ¥y
(l’l - 2) j Rm <'{(l + ;a /u> Rm <'{O +;’ #) u(ﬂ) d/l

12

<

X 2
(1=2) [ Ry (G4 3ot ) ] d

/2
X

(” —2) j Rm (A()"-%’ /-t> |u(ﬂ)l dlu

X X S\ 12
<max [u(2)] - [Rm <)~() +-, Ao""—) R, <}~0 +X, /1()+J—>}
4 n n n n
Hence
X y
R (2020042
n n

C 3 X 1,2
S - I: Rlu <)‘() + Ia }'() + l) Rm ('10 +X’ '1() +X>:|
no n n n n

In addition,
X X
max R, <)~0 +— Ao+ _>
' n n
X X
=R (a4 32045
n n
X X " X X
=R,, <;~u +—. A+ —> + f dr R, ('10 +=, Ao+ ">
n n 0 n n
. X X C X X
< R()u <}Lu + -, ’{0 + _> +—= Rl"u <'10 +=, }“0 + _>
n n no n n

Thus it follows from (2.26) that for all x and r [cf. (3.44)]

X X X X
Rln <A() +-, }”() + —> S CROn <)"() + ) A'O + _>
h n n n

(2.24)

(2.25)

(2.26)

(2.27)
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Combining (2.25) and (2.27), we obtain [cf. (3.44)]
‘Rln <'10 + :Y's A'() +Z> - ROM <}'0 + f’ )'0 +Z>|
n n n n

C .n 2 b "
<—R!\? <xn + 50+ f) RY? (,10 +2 2+ X) (2.28)
nd n n n n

Inequality (2.28), identity (2.18), and Lemma 8 guarantee condition (3.44)
of Lemma 9. Condition (3.45) can be proved by similar arguments. Thus
we can apply Lemma 9 to the expression in the r.h.s. of (2.21) and obtain
(2.22).

By using the analogue of the representation (2.10) for R, (4, ) we get

Kn(l()’ ’1) Kn(}'()’ /l)
Kn(’{o’ '10)

RO”(A" Au) = Ku(l’ /“) - (229)

We will use this representation to prove that we can replace the function
Rg, (A, 1) in the r.hs. of (2.22) by

R*(x;, x,)=K, (An, P ; ~\’_,~> _ KAy, 2o —x,/n) Ki( Ao, Ao + x4 /1)

Kn(j'()’ '{0)
(2.30)

We use again Lemma 9 for 4 =R,,, B=R*. As explained above, condi-
tions (3.41)-(3.43) hold for this 4 and thus we have to check (3.44) and
(3.45). Since, according to (2.29) and (2.30),

‘R*(x’ y) - R()n(xa y)|

< lKH <A'0’ z'()+y—x> _Kn (AO'I'fa A()+Z)'
n n n

[K (Ao, zn+i‘)-1<,, (xo, zo—5>
n n

it suffices to check that uniformly in |y| <nd and n >

lKu (A()+:’Ss '1() +Z>_Kn <A'Oa 10+y—x> )
n n n

‘Kn(/los j'(1 +y/n)
Kn()'O, 20)

Cx?

id *
nl/4

< X<l (231)
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and

J~/l()'

—nd

- 2 C 53
1<,,(,1(,+f,/10+3>—1<,,(zo,;.odrA y)‘ dxs—('fT) (2.32)
n n n n

Estimate (2.31) follows from Lemma 7, because |x|, |y|<nd=Ilogn.

Estimate (2.32) can be obtained if we integrate (2.31) with respect to x.
Thus we have proved that

s n—1 4 n5 I d\
K, (b tats) =T |14 T 5[ 11

—nd X
1
x det | R*(x;, x|/ A_,+0< 5)] (2.33)

The next step is to prove that we can replace the integral over the interval

{—nd, nd) in the r.hs. of (2.33) by the integral over the whole axis R. To
this end let us notice first that since R*(x, x) = R*(—x, —Xx)

J-nr) / d\
J

—Il!)l_] -’j

det | R*(x;, x)l o

!

no dx_
=" T = det 1R*x, x,)(1 =63 L (234)

—nd =1 Xj
In addition,

!

dx;
A’EU Y —Ldet [[R*(x;, x;, )(1 -9, ”_,l.-_l
i=1
no / d
— ]—[ ’det [R*(x;, x;)(1 5_/’\‘)”,;./\-=I

~ru)'"~ [T

/ ) _ - -
<y oy U R
p=1 i=1

x;l

ol X)) dx;
o T1 20 oty Re(, x,)(1— 8,0l

Ji=p+1 J'
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d s X ; X
< Z C Cm J H Xll()(xj)) dY,
p=1

m= 0 j=1 ,xj’

P =xalx)) dx,

i=p+1 |’\/

li[ Xxi) dx,

k=p+m+1 |' /\'l

det | R*(x;, x, (1 =8l ]

{ 1—p .

" Xm ))d\

S Z Clp Z Cl—p {J 1—[ Y)l .
p=1 m=0 i=1 ’

p+m (1_~ (xi dx,- ! v
e el | OPTER]
i

i=p+1 k=p+m+1

{J' l—[ Xno‘(xj))dxj PEE (1 —x X)) dx;
i=1 lij}M i=p+1 ,'\_jl.}q

; 172
x [T AU e Rey, v (15 k>ll£~.k=.!2}

k=p+m+] “ /\'I

The first factor in the r.h.s. of the last inequality can be estimated by

(né) ~7*C'~r. To estimate the second one we repeat almost literally the
arguments of Lemma 9. We obtain

4,<M+HD2C(ng) 14
Therefore

n—1 I ! dv.
K, </10, Ao+ > T4 [ 1+ Z j H %
RNy

i

1
x det ”R*(Xj, \‘,‘)“:A it (0] <Gé—)l—_‘)] (2.35)

Now, by using the formula

dpa
det [la /\[I/A—()_aflodet ’u

oo ljk=1
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we obtain from (2.35)
s n—1 ! ! dY-
K }L - = A, - )
< ”’A"+n> Tlo) [H 2 /'p,,(/lo)J I L X

1
xdet ||IS,(x; = x )4 o+ O ((’1—(5).7;>] (2.36)

where x,=0 and S,(x)=K,(A,, 1o+ x/n). The integral in the rhs. of
(2.36) can be computed by using the Fourier integral technique. This is
done in Lemma 11 of Section 3. According to that lemma,

i — Sin npn(j'()) § < 1 >jl
Ku <2105 /10 + n) = Tﬂ(/{O) [ np”(i()) P + 0 (’15) 174 (237)

Comparing this expression with (1.22), we see that to finish the proof of the
Theorem, we have to establish the relation

hm Tn( ) p(l())

n-—

This relation follows from the Proposition and Lemma 10 of Section 3. The
Theorem is proved.

3. AUXILIARY RESULTS

In this section we prove a number of facts that we used in the proofs
of the Theorem and the Proposition in Section 2.

Lemma 1. Let (1), 1€ R, be a continuously differentiable and poly-
nomially bounded function, and let B be an arbitrary Hermitian matrix.
Then

E{Fy(M)} —nE{F(M) Tr V'(M)B} =0 (3.1)

where F(M)=1lim,_ , e '[ F(M +¢eB)— F(M)].

Proof. We obtain the lemma by differentiating with respect to ¢ the
identity

fexp{ —nTr V(M + tB)} F(M + tB) dM=jexp{ —nTr (M)} F(M)dM

which follows from the invariance of the measure dM with respect to shift
M — M+ B by an arbitrary Hermitian matrix B.
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Remark. This lemma was in fact proved by Bessis er al.*>

Lemma 2. Let K (A, u) be defined by (1.21). Then
2 2 C
[ =y K30 dhdu <= (32)
and for a=1,2

Sy

lju—m*K,%u,md\s (WA (33)

Proof. 1t follows from the orthogonality relations (1.15) that for
j=0,1,2,.

"iPi+|(}L)+’fi |P (A= AP ()t) (r_,=0) (3.4)

where
j;P (N) P,y () e~V d) (3.5)

and we omit the superscript » to simplify the notation. Denote by
J={Jy} 7~ the Jacobi matrix defined by (3.4):

Ju=10; 16t 110,14 (3.6)

Then for any nonnegative integer p
(J/f)jkz'[;nl/,m (A)Y(AN ) dA (3.7)
By using the identity
5 1
fK,',()»,u)du=;K,,()~,,1) (3.8)

and (3.7) for p=1, 2, we find that the Lhs. of (3.2) is

n—1 n—1
2(2 J,— ¥ J) (3.9)
i=0

Jk=0
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This relation and (3.6) yield

n—1

nzj(,{—y)zK,f(A,/z)d/Idu=2r2 (3.10)

Using (1.7) and (1.19)—(1.21), we obtain that for some n-independent a, L,,
L>0

WA <np(A)<nexp{ —an[ V(A)— max V(u)]}, |A=L (3.11)

el < Ly
and then (3.5) implies the bound

lr|<C (3.12)
for some C. This bound and (3.10) imply (3.2). Similar arguments and
Eq. (34) yield

[ Q=) K2y du =, (DY,

Now (3.3) follows from this identity and (3.12). The case o =2 in the Lh.s.
of (3.3} can be proved analogously. Lemma 2 is proved.

Lemma 3. Let f(u), £€R, be a bounded and Holder continuous
function,

/D) =< ClA—pf” (3.13)
for some C>0 and 0 <a <1, and

1 n
f,,=; Z f(l;lrb)

i=1
where {4}"'}"_, are eigenvalues of a random matrix. Then

D{f}=E{|f,—E{f}]*}<Cn'~* (3.14)

Proof. By using (1.18) and (1.19), we can write (3.14) as

DS} =4[ 1fQ) ~ FQ)? K32 ) dd d
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This representation, (3.13), the Holder inequality, and the relation
JK,Z,(A,,u) dhdu=n" (3.15)
yield the bound

D{f,,}scz“ll —ul? KA 0 dh ][] =

which implies (3.14) in view of Lemma 2. Lemma 3 is proved.

Lemma 4. Assume that A is a point of the spectral axis at which
p(4)>0. Then

1 2 /2
pla)=- o) - V(A)]°/4}'? (3.16)

where Q(41) is defined by (2.7).

Proof. According to (1.8), p,(A) converges weakly to p(A). This
result allows us to perform the limiting transition in (2.5) and to obtain for
nonreal z’s the relation

g2+ V'(A) glz) + O(2) (3.17)

where g(z) is the Stieltjes transform of the limiting density p(A). Definition
(2.7) and condition (1.11b) of the Theorem imply that Q(4 +i0) is a real-
valued, bounded function with a bounded derivative. Then by general
principles

P(l)=%3g(l+i0) (3.18)

is also bounded. Computing the real and the imaginary parts of (3.17)
rewritten as

g= ——5— (3.19)

we find (3.16). Lemma 4 is proved.

Lemma 5. Under the conditions of the Theorem

supp ()< C (3.20)

"o
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and

d n /1 2 2
‘ pdz(l )‘SCI(II/ZI(A)'*'WE(/I))‘FCE (3.21)
Proof. We start from a simple identity

dp,(A) _dp.(i+1)
i dr

=1

Performing in the integral (1.2) the change of variables A,—t=pu,,
i=2,..,n, we rewrite p, (A +f) as follows:

plA+t)=2"" fexp {—nV(l)—n i V(t+/1j)}

"

x [T GA=p)?* TI wi+p,) du;
=

i>j=2

13

Thus, after differentiating with respect to 1, we get, for r=0,

A .
d/’(é )_ —nV'(4) p,(A) —n(n— I)J Vi(Ay) pAA Asyn A,) dA5 ... dA,

= —n V'(/{) K”(’L ’1)

=1 [ V(ALK AL D) KAz, 22) = K22 22)] didy (3.22)
The identity (3.1) for {M)=1 and B=1 yields
E{Tr V/(M)} =n [ V() K,(A, 2) d2 =0
Hence by (3.22)
P =n [ V() = V()] KA ) d (3.23)

Now we split this integral into two parts corresponding to the intervals
| > L and |u} <L, where L is defined by (1.7). The former integral is
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bounded because of the inequality KZ(4,u) <K, (A, A) K, (u, 1) and the
bound (1.7) for K, (4, 2)=p,(A). In the latter we write

— A
VI(/u)_ V’(}‘) = (/—l )) V”(}\.)+( 3 ) V"’(C)

for some ¢ depending on 4 and y and use Lemma 2 and condition (1.11b) of
the Theorem. Combining the bounds for these two integrals, we obtain
(3.21). To obtain (3.20), we have to use (3.23) and (1.13). Lemma S is proved.

14

Lemma 6. Take e=O(n~'"). Then for any A and » such that

p(A)>n"'" we have
1
[ i desC (1 (324
W~ i <a p(2)
1, 2 1 ™ _
LW < (T i —dlse (325)

Proof. Let us introduce the density

1 n—1 ,
i (s 2y = 5= xp p{-n T i)} T1 G-ar 626)
J=1

I<jek<n—1

The difference of this density from density (1.2) written for n — 1 variables
Alses Ay 18 that in the former we have the factor » in the exponent, while
in the latter we have n— 1. Set

n—2

1
p,;(z)=”ij,,-(/1,/:z,...,;.,,,,)d/iz...dx,,vl_’ Y Y] (3.27)

=0

Then

Wi (Ay=nlpl)—p, (4] (3.28)

Furthermore, by using the analogue of identity (3.1) for the density p, and
arguments similar to those proving (2.5), we obtain the relation

- (Y N 1
[g,f(Z)]'+J‘—%)_L';UI—)dﬂ=O<nZn4) (3.29)

for the Stieltjes transform g, (z) of p, (1) and == A + iy, n > 0. Denote

‘p,z,—l(ll)

H—z

A,,(:)En(g,,(:)—g,,’(:))zf du (3.30)
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subtract (3.29) from (2.5), and multiply the result by n. We obtain
i . Vi, () o <L>
A,2)ge) 4, 2N+ [ —E =0 p—

For z =21+ in"'" this relation takes the form

(VD= V') s ()
u—r:

AN E2) + e, (2= VAN = du+0(1)

Then relations (2.8), (3.16), and (3.18) imply that
—t4 1
34,(A+in )< Ci{ 1 +——

p(A)

Using definition (3.30), we obtain for z= A1+ i with e=n—"""

Jl;:-—z|<c¢"_l(#)d#<2£ j(/[-i)z+£2d#\ 1+ (/1) & (331)

Now we derive (3.25) from (3.31). Set

WIIA] =W,z,f|(ﬂ*)= ma)i{lp/ll—l(lu)}

lu—il<e
pr=supl{upe(d—e u*) ¥l ()<Y, /2}
Since [u, — Al <&, we have from (3.31)

1

+—)> n=l# (3.32)

b4 Hy o
n—l(# —u) < J t//,‘,,(,u)d,uéQ(l Q

)
On the other hand,

L ¥

q/,l': 7q/”A )I/Z 2
< I/l*(—,u, l > (‘U*'_/l])g'[;“ ( uul) (” d/l<j Il—l (lu)

and since

[0 wdu= [T 7w w1 ) du< Con®
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we obtain

h< Csn® (3.33)

wE =
Now if we multiply (3.32) by (3.33), we get (3.25) for v, _,.

To prove the analogous bounds for /2, we have to repeat the above
arguments for the density [cf. (3.26)]

n*

1 n4+1 N
Py (A "*')_Z* eXp{—n Y M, } T (=)

=1 Ilgj<k<sn+l
and for

n+1 12
Pt AV =" [ 9 (A D Ay ) Ay vy = 3 [(2))

j 4]
so that Y2(1)=n(p (1) —p,(A)) [cf (3.28)]. Lemma 6 is proved.
Lemma 7. If p(4,) #0, then

B ) — X
’K,, (mf,z(,+"—>—1<,,<ao,a(,+y )
n h n

<Clx| <W+l ;y|_+e~"‘"’/2> (3.34)

Proof. Repeating almost literally the derivation of (3.22), we get

d X—1Ix y—1ix
E K“ (2.0 + )»() n )
X —D —Ix
=anKn<A()+Y_—Yv A’) Kn <10+y \’A>
n n
, 1, —tx\ 1 y—1ix
x| VA —= V' Ay + —=V'{ Ao+ dz
2 n 2 n

To estimate the r.h.s. of this relation, we split this integral into two parts

corresponding to the intervals |A| > L and |1| < L, where L is defined by

(1.7). The former integral is bounded by Cexp{ —nad/2} because of the

inequality KX(A, 1) < K, (A, ) K,(u, #) and the bound (1.7) for K, (1, A) =
p.(A). In the latter integral we write
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I 1 — b
V’(/I)——V’</10 n‘) 3 </10 ; V)

(A—A,) V"(4, )+1(/1 A V(4,)

NI'—‘

O((A—2,)°+(2—4,)%)

(A—2,) V"(4, )+ (A—=4,) V"(4,)

l\)l'—'

+0 <(/1 —A)(A=1,)+ LY%"—)

where

X—1Xx — X
he=dot——,  A=lg+?

RY

According to (3.7),
1 [ Kl ) Ky, D= A ) dA= gl YA,
In addition, by the Schwartz inequality

n

[ Kol 2 Ko A= 2,002 1) |

=)

" “ K3 DA =207 d [ K320 A=A, ) di]

Now the arguments similar to those used in the proof of Lemmas 2 and 5
yield the estimate

d X'—ix y—1x
—K(2 A
ldtK( i >

C 2 2 2 2 X—)y ’ —nad/f2
< (VAR + U2 A+ Vi) + 3 () + B2 )

Combining this estimate with (3.25), we obtain (3.34).
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Lemma 8. Let pi"(4,,4,) be specified by (1.18) for /=2. Then
uniformly in n

J’l P(zn)(j-o +x/n, Aq)
-1 ,\'2

dx<C (3.35)

Proof. Consider

W=< 1

=)
’72('%:'"'10)2

where symbol < ...)> was defined in (2.11). By the Schwarz inequality W?
is bounded from above by the product of integrals

z;! j =2 T Gato=2y

i<ks<n 2<i<sn
X exp {—nV(AU)——n Y V(l‘,)}
i=2

for o= +1/n. In addition, a(V(1,)— V(4,+a)) is bounded in n due to
(1.11b). This allows us to write the bound

5 1 - 1 1
w<C. K,l,/_ ()L(, +;1', /{0 ) K' (lo () ',;> < Cl (336)

On the other hand, W can be written as

W=<n (¢.<z,>+¢z<z,->)>

i=2

=<H ¢7(A}>+”Zl Ci_ 1<Aﬁl¢‘“ Il ¢7(M>

k=1 i=k+2

where

(1 —n*(A—2y)%)?
¢|(l): nz('{""}'())2 '
0, otherwise

nlA—4gl <1
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and

1—n¥A—20)%  nli—2y <1
$o(A) =< n(A—15)2—1

TSI otherwise

Since 0 < ¢-{A) <1, ¢,(1) =0, and 1) =p,(4,), we get from this represen-
tation

W =p,(ha) + = 1) [ @1 (D) (0~ Dexp { 3 ogia}) - (337

By using the Jensen inequality and (1.2) we have

(6(A,—A)exp{3}_,log ¢5(4)} )
(o2, —=2)>

>exp { (30— 1) 3, log b4 o420, 2] )}

i=

—exp {(11—2) j 108 $o(4') pY(Ag, A ') AT P (A, 1)] —'} (3.38)

According to (1.18),

n?
(n—1)n-2
+ 2K, (g, A) K (Ay, A') K, (4, A1)

—1
P 1,21 = (00 P )

_pu(’lﬂ) Kﬁ(}" ll} _pn(;‘} Kj(lax AI}) (339)

Moreover, since log ¢,(4') <0 and

2Kn( A’Ov )‘) Kn('{()’ AI) Kn(l', A)
<21{}1/2(/{07 j~0) K/l'/z(i) '{) 'Kn(}’()s l,)l ° IKII(A'” }')I
spn(A'()) K,z,(lla Z’) +pn('{) Kﬁ(A’O’ A!)

we have

J‘d}" log ¢2()"l)(2Kn(j'0’ A’) Ku(A’Os Al) Kn(j'li )“)

_pn(}'f)) K/?;(A, }-')_pn()‘) K;‘);(AO’ ’1’)) 20

822:86,1-2-10
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Hence, taking into account that p,(A} is bounded from above uniformly
in n, we get

W2 —p,(ho) +(n+1) [ d26,(2) P20, 1)
xexp {(n=1) [ p2) log (1) |

1 1_.‘,2 2
= —puliy) +I | (_\2\)— g ('10, Ao+ )dx

1 o
X eXp {—C(L [log(1 — y?)| dy-}-jl log(1—y~?%) dy>} (3.40)

From (3.40) and (3.36) it is easy to derive (3.35).

Lemma 9. Let the functions A(x, y), B(x,y) be defined for |x|,
|yl <nd, § =n""log n, and satisfy the conditions

A(x, y)<a(x) < Cy, j'l“z;")dxs c? (3.41)
f|A(x,y)|2dx< c? (3.42)
|A(x, x)— A(—x, —x)| <€ |x]| (3.43)
|A(x, ) — B(x, y)| <e»b(x), j;b (_:’dY<C’ b(x)| < C, (3.44)
ji)m(\ »)— B(x, y)|? dx < Clel (3.45)
Then
o g
L)IHI ’j’det HACx,, XN -, <UC)™ (3.46)
and
Ij) Z (det 1A(x;. X)L —det B x4y )| <el(10)"2

-'II)

% (3.47)
where ¢ =nd(e, +¢,)+ ¢, and C depend only on C,, i=1,.., 5.
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Proof. 1t suffices to proves estimates (3.46) and (3.47) for
Ao(x;, X)) = A(x;, X, )(1 —64)
and
Bo(x;, x,) = B(x;, x; (1 =)

Indeed, due to conditions (3.43) and (3.44), the following inequalities hold:

dx

“zm Alx, x}) < 2nde
< 1

—nd

and

“'"’ B(x, x) dx

—nd X

< 2nde, +2&,(Cy+ C, log nd)

and we can easily obtain (3.46) and (3.47) for general 4 and B from the
respective bounds for 4, and B,.
Consider

nd IdY
F(t)=f [T —det 4,(x,, x4,

—nd oy Xy
where A (x;, x;) = Ao(x;, x;) + t(Bo — Ao)(x;, x;). To obtain (3.46) we have
to estimate |F(1)— F(0)|. Therefore it suffices to estimate dF/dt. Differen-
tiating F(¢), making respective permutations of columns and rows, and the
same renumbering of variables, we obtain

ne ! dv(
__1j Jdet 1D, (s x4 )k =y
—-m) ;

where
D(xy, xi)= (Ao — By)(x,, x,), D(x;, x;)=Ax;, Xz}, jz2

Thus

dF '
II‘E H jdet D {x;, x; ”,A—ll

=1 1%l

nd /

dx.
1, T =) (det D x|

—nd i
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! "o n d\'
+ ) C'/'{ )H X:(Y)
m=1 g
!
x [T 1=z x;) ’|det 1D (x5 X )i ]
J=m+1 ' Il
no n
+ ¥.(x;)
I—no - , j| /{l( g )
< I xto) 22 S ldetID sl | G4
J=m+1

where y,(x) is the indicator of the interval (—1, 1). Let us estimate the last
term

m

no [l.\'-
F,‘.'”’=f [T =xn

—nd J=1 |x,|

x H Xx(\) 'IdetllD(\,XA Mgl

Fi=nm+1 { /‘

Other terms in the r.h.s. of (3.48) can be estimated similarly,

IF(m)l < {J’NO
N =

- m)

n

H m 1—,{1(\’))

li

d 1,2
x [T x(x) =5 |det |D(x;, x;) llﬁk_ll}

J=m+1 ' ,

1A [ {g 172
X{f H 3/4” xi(x;)) H ,{l(\)d‘(}
A'")’_] | /I j=m+|

"()' nr d
S{J TT —s (1 —7(x,)

‘Hl)l_l 'Y'

! dx. ! / _’ 172 R
I o BT T Disuxa 2002 (39
NAT T k=

j=m+1

Here we used the Schwartz inequality and then the Hadamard estimate for
determinants. Now the r.h.s. of (3.49) can be rewritten as the sum of the
integrals
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ne m
>_J\—m) =\ |Y|3/4 Xl('\./))
X H Xl(\) (Xl,.\’jl)...Dlz(,\‘,, xj,)
F=m+1 | I
ll() m dY d'Y.
< 1— 5
f_"(, H | x |3/4( —aby )), 1::[4»|/l I-“j|

Ji=1

X Di(xy, X)) .. DX(x,,, X; Y a{(X,010) ... a}(x) (3.50)

with a,(x)=a(x) + te;b{x).

To estimate the last integral, we start by integrating with respect to the
“free” variables, 1.e., the variables that do not enter the set (X}, 5 X5 ). We
use bound (3.42) for the integral with respect to x; and bounds (3.44) and
(3.45) for integrals with respect to x.., x,,. If there are no free variables,
then we use the inequality D,Z(x,,,,,\'jm)g(Cu+te2 C,)?, which makes the
variable x; free. Repeating this procedure, we end up either with the
estimate

I, ,<C'7'4; (3.51)

Sty

or with the estimate

I .,<eC'7'4;, (3.52)

J)

where C=max{2(C, +¢,C,), Cy+¢,C,, 2(C,+¢,Cs5)} and

"o d".
J DX (x5 X )(1 =y (x )1 — X,(,\))l luﬁ

—nd

with some i, j <m. Regarding D}(x,, x,) as the kernel of an integral operator
acting in L,{ —nd, nd) and using the bound sup §” , D}(x;, x,) dx, for the

—nd

norm of this operator and bounds (3.42) and (3.45), we obtaln that

2
I, ,<&C

-y

Repeating a similar argument to estimate all the other terms in (3.48), we
obtain (3.46) and (3.47).

Lemma 10. Let T, be defined by (2.13). Then

lle(l(}}_pu(}”OH < (3.53)

logn
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Proof. We will prove the following bounds:

|[E{U,(A¢)} —3sV'(Ay)] < Csn~"*logn {3.54)
Cexp{2U,(4o)} > < C (3.55)
<IU"(A.0)—E{ Un(j'())}|2> <C/n6 (356)

where U,(4,) is specified by (2.15). Assuming that these bounds hold, it is
easy to prove (3.53) by using the Schwarz inequality and the elementary
inequality |e¥— 1] < |x| (e¥+1).

To prove (3.54) rewrite E{ U,(,)} as

E{U,(20)} =(n=1) [ u(2) p,(3) dA
= [ (1= 1) w2 = §())p,2) = p(2)) d

+ [ 920~ p(2)) da+ (n=1) [u(h) p) d2 (35T)

where ¢(4) is a differentiable function of the form

Ao+ 0, — A s>
(n—1) =255 ln<1—n§|

P(A)= A—2Ay+6, < s>
+(n—1) %, In 1+m5], (A=Al <6,

(n—1)u(l), otherwise

where §, =n~"* Using the Proposition and Lemma 4, one can estimate
the first integral I, in the r.h.s. of (3.57) as follows:

I, < Cn’”“f ((n—1|u(A)| +1(A))) dA< Csn~"“logn (3.58)

|4~ ol <)

To estimate the second integral, we use inequality (1.8), according to which

lijp,,u)—pu)) drl < Cn='? log" n |4'111> 11112

=Co7'n""log"?n (3.59)
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The last integral I, in the r.h.s. of (3.57) can be calculated by using a result
from ref. 9 according to which, for any 4, p(4) #£0,

jlog 1= X p(X) dA’ = L ¥(2) + const (3.60)

Thus we have

1

Hn—1) V(Ao +s/n) — V(X)) + O((nd,) ") (3.61)

Relations (3.57)—(3.61) prove (3.54).
To prove (3.55), consider f(t)=log{exp{tU,(1,)}>. Since f(t) is a
convex function,

F(2)<f(0) +2f'(2) =log p,(Ag) +21"(2) (3.62)

In view of (2.16)

S2)=(n=1) [ u2) Ry (4 2) d2

=(n—1) j w(A) Ro (A A) dh+(n—1) jl dt f u(l) R, (A A)dA  (3.63)
4]

where R,, and R/, are specified by (2.20) and (2.23). According to (2.3}, the
second integral /, in (3.63) can be rewritten as

L=(n— l)rdr Uul(,l) R, (% 1) dA
0

+(n—1)juu)uu')R2

m

(A, A')dA di’]

SCI110g3<1+%>dx

ne

+(n—1)2jzdrfuu) (') R2(A, A') dd dA (3.64)

0

where we have used (2.29) for A=p and (1.20), according to which
Ry (A, A) <K, (4, A)=p,(4), the boundedness of p,(1), and (2.27).
Regarding R2 (A, A') as a kernel of integral operator R in L,(R), one can

m

estimate its norm as |R|| < max,{| R}(4, 2')dA’ =n"". Thus

i
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(n— 1)2[11(1) W) R2(2, ') dA di!

<n f w(1) di
¥ 8 C
2 i e
scfm log*(1+x~") dr < (3.65)
To estimate the first integral I, in the r.h.s. of (3.63) we use again (2.29). Then

I,=(n— 1)[u(z)Ro,,(A,,1)dA

n—1 ”
=(n—1)Ju(/l)K,,(/l,/l)d/l—p"MO)Ju(l) KA, 2) dA
=pra )+0(n-'/4logn)+0<nm—a’ﬂﬂj1€(; zm;)
2 0 pu(i()) oo
=% V'(20) + O((nd) ) (3.66)

Here we have used (3.54) to calculate (n—1) f u(A) K, (A, 1) dA. Relations
(3.62)-(3.66) prove (3.55).
To prove (3.66), let us note that in view of (3.54) and (3.66),
E(U)} = ( %, ui)) +0(nd) )
0

j=2

where {...), denotes the expectation with respect to density (2.18). This
expectation is related to the operation {...> =E{d(4,—4,)...} as (...> =
P2.(40){...>4. Thus, to estimate the r.h.s. of (3.56), it is enough to estimate

(5 0~(5. 40
j=2 j=2 o/ /o
g(n—nfuzu) Ry,(4 1) di

—(n—1)n—2) j () u(2') R2 (1, A') dA dX'

Combining this inequality with estimate (3.64), we get (3.56). Lemma 10 is
proved.
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Lemma 11. Let X(x), xeR, be a smooth enough and rapidly
decaying function. Then
(iﬂ)IXI+I(0) 1_(_1)I+l
I+1 2

" dx,
[ > Zdet 1x0x,— x4 o=

J=1 7

(3.67)

where x,=0.

Proof. By using the Fourier integral representation of X{x), we can
write

/
det ”X('\'j_xl\-)lu_k:o:j H dpj /?(Pj) det ||exp{i~\'_,'(l7j—P/\-)”_;,k:o

j=0
where X{ p) is the Fourier transform of X(x). This representation and the
identity
ipx

Je—_dx=in sign p = inf( p)

allow us to rewrite the integral in the Lh.s. of (3.64) as follows:

1 1 1 . 1

/ 8(p\—po) 0 - - 0(py—p)

(m)lj H dp; X,(Pj) (p.—po) Op>—py) 0 - 6(p—p)
/=() . . . . .

8(p,—po) : - 0

Let us compute the determinant in the domain p,.., 2, <Pos Purs (s
D= po. Without loss of generality we can assume that p, <p,...<p,, <
Po<Pmsi <..<p; Then the determinant will have the form

+1 +1 +1 41 - - +1 +1
-1 0 -1 -1 . - -1 -1
-1 +1 0 -1 - - . -1
1 +1 41 - - - =1 =1
+1 +1 41 +1 - - =1 =1
#1 +1 41 - - 41 41 0
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Subtracting the first row from the /th, {/—1)th,..., {{ —m)th ones and then
the first column from the second,..., mth ones, we find that the determinant
is equal to (—1)’ "™ Therefore the Lh.s. of (3.67} is equal to

! N M n v o, 1—m
(im)" Y CI/”JdP()X(pn)<J dp X’(p)) U X(p)dp>

m=90 f2)

-

P !
= [ dpu £ po) (2 [ dp Xp)- X(O))

_(l-n)IXl+l(0) 1_(_])/4—[
CI+1 2

Lemma 11 is proved.

4. DISCUSSION

Let us regard the set {A{"'}7_, of eigenvalues of random matrices as

a point process, i.€., as the random counting measure

v(4dY=nN,(4)= 2 1 (4.1)

e a

Keeping in mind that we are studying the asymptotic behavior of the eigen-
value statistics for large n, we can define this point process either by the
system (1.4) of its marginal distributions or by its generating functional

®,[¢]=E {exp [ j #(1) v,,(cli)]} (4.2)

defined on a suitable space of test functions ¢(4), A& R. We use the simplest
case of bounded piecewise continuous functions with a compact support.
Then, by using (1.17), we find that

P, [¢]=det(l —k,[4]) (4.3)

where k,[¢] is the integral operator defined on the support o, of ¢ by the
kernel

k(A p)(1 —e*h (4.4)

According to the Theorem, the “scaling” limit (1.9) of all marginal densities
(1.4) is given by (1.9) for all unitary invariant ensembles defined by (1.1),
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(1.7), and (1.11). To find the same limit for the generating functional we
have to replace the test function ¢(4) by ¢,(x)=@(x/np,(A,)). Then

¢[¢] = ,,lerl/ ¢11[¢/1] = det(l - Q:/») (45)

where @, is the integral operator defined on g, by the formula
(QuNNX) =] Stx=y)1—e*) f(y)dy, xeq,  (46)
a4

and S(x) is defined in (1.10). These formulas contain in fact the same
information as (1.9), saying that in our case the point process

y (1) =y —f >
Vie (H=v, <l()’ Ao+ np.(An) (4.7)

converges weakly as n— oo to the random process defined by (4.5) and
(4.6) or by (1.9).
Consider now the probability

R({4}_)=Pr{v 4)=0,j=1,.1} (4.8)

that an ordered set of disjoint intervals 4,=(q;, b,) does not contain eigen-
values. Then arguments similar to those proving (4.3) imply that

R,({4;}i_ ) =det(1-K,,) (4.9)

where 4 = U§=, 4; and K, is the integral operator defined on 4 by the
kernel '

!
Z X/Ij('l) ku(la /'l) X/lv,()u)
J=1

Setting

o; /3
ay=dyt =S b=t
' n n A' ' n 'l(l )
P.(4o) / Pl 4o (4.10)

0, =(a;, B, o= U 5]

i=1

and using the Theorem, we obtain that

lim R,({4,}]_))=r(d) (4.11)

n— s
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where r(d) 1s the Fredholm determinant of the kernel

!
Z Z(il(x) S('Y—)))Xlij(y) (412)

i=1
We can also introduce the more general kernel

i

¥ T (X) S(x =) x5(¥) (4.13)

J=1

for an arbitrary collection of real 7;. Then if for an arbitrary collection
k={(k,,., k) of positive integers we consider the probability

R,({4;}5o Ak} o) =Pr{v,(4) =k}
its limit {0, k) is

(=) ghi+ - vk
kyVookt otk ook

o, k)= r(d, 1) (4.14)

=1

where r(d, 7) is the Fredholm determinant of the kernel (4.13).

The case /=1 of (4.8) and (4.11) determines'"’ the limiting probability
distribution of distances between nearest neighbor eigenvalues (spacings)
lying in the O(n~') neighborhood of A,. Thus in the limit (4.10) the
spacing probability distribution is the same for all ensembles satisfying the
conditions of the Theorem. For the Gaussian case, formula (4.14) was
obtained in ref. 18, where some other kernels were also considered and
various connections of the determinant (4.13) to integrable systems and
related topics are discussed.

We can also consider another asymptotic regime, making “windows”
in the O(n~') neighborhood of different spectral points, i.e., considering the
joint probability distribution of the counting functions v{!(t,),..., v{"'(;)
for distinct n-independent 4,, .., 4,. Take for simplicity k=2. Then we
have to consider generating functional (4.2) on functions

¢(/[) = ¢l(npn(}‘l )(,ll - }"l)) + ¢2(npn()"2)(/‘ - AZ))

Inserting this ¢(x) in (4.2) and using a result from ref. 9 according to which
Py AL, A3y = plly) p(4s) as n— oo for distinct n-independent A, and 4,
and the Theorem, we obtain

lim &,[¢]=2[4,] (4]

where @[ ¢] is defined by (4.5) and (4.6).
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We conclude that in the “scaling” limit the local statistics eigenvalues
lying in O(n~"') neighborhoods of distinct spectral points are independent.
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